Answer:
The acceleration is in 2 D as in between east and south.
Explanation:
mass, m = 50 kg
acceleration, a = 0.25 m/s^2 horizontal
acceleration of elevator, a' = 1 m/s^2 downwards
When a person on the ground the resultant acceleration of the person with respect to the ground is between east and south direction so the path os parabolic in nature. It graph is shown below:
Answer:
M = 222 fringes
Explanation:
given
λ = 559 n m = 559 × 10⁻⁹ m
radius = 0.026 mm = 0.026 ×10⁻³ m
length of the glass plate = 22.1 ×10⁻² m
using relation


= 221.79
= 221 (approx.)
hence no of bright fringe
M = m + 1
= 221 +1
M = 222 fringes
Answer:
The effect of gravity extends from each object out into space in all directions, and for an infinite distance. However, the strength of the gravitational force reduces quickly with distance. Humans are never aware of the Sun's gravity pulling them because the pull is so small at the distance between the Earth and Sun.
Answer:
1) λ = 0.413 m
, 2)v = 25,213 m / s
, 3) T = 0.216 N
, 4) m = 22.04 10-3 kg
Explanation:
1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related
λ = 2L / n n = 1, 2, 3 ...
In this case L = 0.62 m and n = 3
Let's calculate
λ = 2 0.62 / 3
λ = 0.413 m
2) the velocity related to wavelength and frequency
v = λ f
v = 0.413 61
v = 25,213 m / s
3) let's use the equation
v = √T /μ
T = v² μ
T = 25,213² 3.4 10⁻⁴
T = 0.216 N
4) the rope tension is proportional to the hanging weight
T-W = 0
T = W
W = m g
m = W / g
m = 0.216 / 9.8
m = 22.04 10-3 kg
5) n = 2
λ = 2 0.62 / 2
λ = 0.62 m
6) v = λ f
v = 0.62 61
v = 37.82 m / s
7) T = v² μ
T = 37.82² 3.4 10⁻⁴
T = 0.486 N
8) m = W / g
m = 0.486 / 9.8
m = 49.62 10⁻³ kg
9) n = 1
λ = 2 0.62
λ = 1.24 m
v = 1.24 61
v = 75.64 m / s
T = v² miu
T = 75.64² 3.4 10⁻⁴
T = 2.572 10⁻² N
m = 2.572 10⁻² / 9.8
m = 262.4 10⁻³ kg
V ( initial ) = 20 m/s
h = 2.30 m
h = v y * t + g t ² / 2
d = v x * t
1 ) At α = 18°:
v y = 20 * sin 18° = 6.18 m/s
v x = 20 * cos 18° = 19.02 m/ s
2.30 = 6.18 t + 4.9 t²
4.9 t² + 6.18 t - 2.30 = 0
After solving the quadratic equation ( a = 4.9, b = 6.18, c = - 2.3 ):
t 1/2 = (- 6.18 +/- √( 6.18² - 4 * 4.9 * (-2.3)) ) / ( 2 * 4.9 )
t = 0.3 s
d 1 = 19.02 m/s * 0.3 s = 5.706 m
2 ) At α = 8°:
v y = 20* sin 8° = 2.78 m/s
v x = 20* cos 8° = 19.81 m/s
2.3 = 2.78 t + 4.9 t²
4.9 t² + 2.78 t - 2.3 = 0
t = 0.46 s
d 2 = 19.81 * 0.46 = 9.113 m
The distance is:
d 2 - d 1 = 9.113 m - 5.706 m = 3.407 m
GOOD LUCK AND HOPE IT HELPS U