Answer:
-24 m/s
Explanation:
mass of the bowling ball = 3 kg
time (t) = 0.3 seconds
Force = 24 N
initial velocity u = ???
We know that;
Force = mass × acceleration (a)
So;
24 = 3 × a
a = 24/3
a = 8 m/s²
Also;
From equation of motion; acceleration is given by the relation;

if v = 0
then ;

24 = 0- u
u = -24 m/s
Thus; the initial velocity of the bowling ball when it first touched the mattress = -24 m/s
Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then

The most important characteristics that are exhibited by metals are-
1- Metals are ductile
2-Most metals are conductive in nature.
3-Most metals are malleable.
4- Metals have strong inter molecular force of attraction between the.
5-Metals have luster.
6-Metals are sonorous.
Here we are given Tungsten filament.
Tungsten is a metal.So it must be conductive and as well as ductile in nature.
The electric filament that we are using in our electric bulb glows due to the heating effect of current.Hence the chosen substances for glowing electric bulb must have high melting point.
The melting point of tungsten is 1650 degree celsius which is very high.That's why it is used in electric bulb.
Hence the correct answer to the question is the third one i.e Tungsten is ductile,has a high melting point, and is electrically conductive.
Answer:
160m/s
Explanation:
The speed of a wave is related to its frequency and wavelength, according to this equation:
v=f ×λ
The amount of gravitational potential energy acquired by the rock is equal to:

where
m is the mass of the rock
g is the gravitational acceleration

is the increase in height of the rock
Substituting the data of the problem, we find

So, Natalie gave 220.7 J of energy to the rock.