The equation for range is:
R = v₀²sin(2θ)/g
To find the maximum R, differentiate the equation and equate to zero. The solution is as follows:
dR/dθ = (v₀²/g)(sin 2θ)
dR/dθ = (v₀²/g)(cos 2θ)(2) = 0
cos 2θ = 0
2θ = cos⁻¹ 0 = 90
θ = 90/2
<em>θ = 45°</em>
If you know the real modulus of the cable (Y), the length, and the area (based on the radius), you can compute the spring constant, k = AE/L. Then, if you know the force used, you can compute the displacement, using F = kd, or d = F / k = FL/(AE). Our answer should work out to units of length. So,
d = 803 N * 9.06 m / [pi*(0.574 cm)^2 * 2.0 x 10^11 N/m^2]
d = 3.5 x 10^-8 Nm^3 / (cm^2 * N)
d = 3.5 x 10^-8 m^3 / cm^2 * (100 cm / 1 m)^2
d = 3.5 x 10^-4 m
During the operation of fan we know that it is working on the electricity
So here when we connect the fan with electricity it uses the electrical energy and convert that energy into mechanical energy of fan
Fan uses this electrical energy to rotate the blades of fan and then it gives the high speed air to us
So here correct answer must be
B.
motion energy
Answer:
light travels faster than sound