The De Broglie's wavelength of a particle is given by:

where
is the Planck constant
p is the momentum of the particle
In this problem, the momentum of the electron is equal to the product between its mass and its speed:

and if we substitute this into the previous equation, we find the De Broglie wavelength of the electron:

So, the answer is True.
I would assume air resistance is negligible and so the acceleration of the package would be approximately 9.81 m/s².
Taking downwards as positive, use v²=u²+2as.
v²=(-2)²+2(9.81)(14)
v=16.7 m/s
Answer:
The range of powers is 
Explanation:
From the question we are told that
The far point of the left eye is 
The near point of the left eye is 
The near point with the glasses on is 
From these parameter we can see that with the glass on that for near point the
Object distance would be 
Image distance would be 
To obtain the focal length we would apply the lens formula which is mathematically represented as

substituting values


converting to meters


Generally the power of the lens is mathematically represented as

Substituting values


From these parameter we can see that with the glass on that for far point the
Object distance would be 
Image distance would be 
To obtain the focal length of the lens we would apply the lens formula which is mathematically represented as

substituting values


converting to meters

Generally the power of the lens is mathematically represented as

Substituting values


This implies that the range of powers of the lens in his glass is

Answer:
Concave Lens Uses. Telescope and Binoculars Spectacles Lasers Cameras FlashlightsPeepholes. ...
Used in telescope and binoculars. ...
Concave lens used in glasses. ...
Uses of concave lens in lasers. ...
Use of concave lens in cameras. ...
Used in flashlights. ...
Concave lens used in peepholes.
Answer:
If voltage is kept constant across the resistor itself, it' current will reduce. If the resistance is part of oscillator circuit, frequency response will change. If it is in series with capacitor or inductor, it will change the damping effect.
Explanation: