Answer:
It depends what other values you have. Can you give more info? If they give density then you can solve for m.
The volume of Muriatic acid needed is 199ml.
<h3>What is concentration?</h3>
- Concentration in chemistry is calculated by dividing a constituent's abundance by the mixture's total volume.
- Mass concentration, molar concentration, number concentration, and volume concentration are four different categories of mathematical description.
- Any type of chemical mixture can be referred to by the term "concentration," however solutes and solvents in solutions are most usually mentioned.
- There are different types of molar (quantity) concentration, including normal concentration and osmotic concentration.
<h3>How is concentration determined?</h3>
- Subtract the solute's mass from the total volume of the solution. Using m as the solute's mass and V as the total volume of the solution, write out the equation C = m/V.
- To get the concentration of your solution, divide the mass and volume figures you discovered and plug them in.
Learn more about concentration here:
brainly.com/question/13872928
#SPJ4
<h3>
Answer:</h3>
Chlorine gas (Cl₂)
<h3>
Explanation:</h3>
- According to the Graham's law of diffusion, the diffusion rate of a gas is inversely proportional to the square root of its density or molar mass.
- Therefore, a lighter gas will diffuse faster at a given temperature compared to a heavy gas.
- Consequently, the heavier a gas is then the denser it is and the slower it diffuses at a given temperature and vice versa.
In this case we are given gases, CI₂
, H₂,He and Ne.
- We are required to identify the gas that will diffuse at the slowest rate.
- In other words we are required to determine the heaviest gas.
Looking at the molar mass of the gases given;
Cl₂- 70.91 g/mol
H₂- 2.02 g/mol
He - 4.00 g/mol
Ne- 20.18 g/mol
Therefore, chlorine gas is the heaviest and thus will diffuse at the slowest rate among the choices given.
According to the equation, the ratio of the reactant Cu and product CuO is 2:2, thus 1:1. Therefore to produce 2.44 mol CuO, 2.44 mol Cu is required. The molecular weight of Cu is 64. So the mass of Cu that is required to produce 2.44mol CuO is 2.44mol * 64 g/mol = 156.16 g.
Answer:
0.6364 g/cm^3
Explanation:
Density = mass/volume
Where mass = 5.6g and...
Volume = (33.9 - 25.1) = 8.8ml
Where 1ml = 1 cm^3
Density = 5.6/8.8 = 0.6364 g/cm^3