Answer:
Kc for this reaction is 0.06825
Explanation:
Step 1: Data given
Number of moles formaldehyde CH2O = 0.055 moles
Volume = 500 mL = 0.500 L
At equilibrium, the CH2O(g) concentration = 0.051 mol
Step 2: The balanced equation
CH2O <=> H2 + CO
Step 3: Calculate the initial concentrations
Concentration = moles / volume
[CH2O] = 0.055 moles . 0.500 L
[CH2O] = 0.11 M
[H2] = 0M
[CO] = 0M
Step 4: The concentration at the equilibrium
[CH2O] = 0.11 - X M = 0.051 M
[H2] = XM
[CO] = XM
[CH2O] = 0.11 - X M = 0.051 M
X = 0.11 - 0.051 = 0.059
[H2] = XM = 0.059 M
[CO] = XM = 0.059 M
Step 5: Calculate Kc
Kc = [H2][CO]/[CHO]
Kc = (0.059 * 0.059) / 0.051
Kc = 0.06825
Kc for this reaction is 0.06825
Answer:
C
Explanation:
because it is complete combustion so it will produced CO2 +H2O :)
Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C
Answer: hydroxide ions
Explanation:
According to the Arrhenius concept, an acid is a substance that ionizes in the water to give hydronium ion or hydrogen ion and a bases is a substance that ionizes in the water to give hydroxide ion .
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
As KOH can give hydroxide ions on dissociation , it is considered as arrhenius base.
