Answer:
9.25
Explanation:
Let first find the moles of
and 
number of moles of
= 0.40 mol/L × 200 × 10⁻³L
= 0.08 mole
number of moles of
= 0.80 mol/L × 50 × 10⁻³L
= 0.04 mole
The equation for the reaction is expressed as:

The ICE Table is shown below as follows:

Initial (M) 0.08 0.04 0
Change (M) - 0.04 -0.04 + 0.04
Equilibrium (M) 0.04 0 0.04







for buffer solutions
since they are in the same solution


Answer:
1.67mol/L
Explanation:
Data obtained from the question include:
Mole of solute (K2CO3) = 5.51 moles
Volume of solution = 3.30 L
Molarity =?
Molarity is simply the mole of solute per unit litre of the solution. It can be expressed mathematically as:
Molarity = mole of solute /Volume of solution
Molarity = 5.51 mol/3.30 L
Molarity = 1.67mol/L
Therefore, the molarity of K2CO3 is 1.67mol/L
<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Answer:
A-B
C-D
E-F
I think it's these because Potential Energy increase when the graph increases and remain constant when the graph is flat.