Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories. Not only is measurement important in science and the chemical industry, it is also essential in farming, engineering, construction, manufacturing, commerce, and numerous other occupations and activities.
Answer:
The magnitude of the frictional force is 48.02 N
Explanation:
Mass of box = 20 kg
Weight of the box (Normal reaction) = mass × acceleration due to gravity = 20 ×9.8 = 196 N
Horizontal force applied = 48 N
Coefficient of friction = horizontal force ÷ normal reaction = 48 ÷ 196 = 0.245
Frictional force = coefficient of friction × normal reaction = 0.245 × 196 N = 48.02 N
The strength, and possibly the shape and direction, of the electric field
around a charged particle depends on the location of the particle.
If the process of measuring the field causes the particle to move, then
the measurement you get wouldn't mean anything.
Your measurements wouldn't show the ACTUAL field around the particle.
They would show what the field is like AFTER something comes along
and distorts it, and that's not what you're trying to measure.
It would be like carrying a flame thrower into a freezer when you go in
to measure the temperature in there.
Or if you had to measure how much light is leaking into a dark room,
and you carried a flashlight with you to see your way around in there.
the plane is on a average of 100km a hour
Force applied on the car due to engine is given as
towards right
Also there is a force on the car towards left due to air drag
towards left
now the net force on the car will be given as

now we can say that since the two forces are here opposite in direction so here the vector sum of two forces will be the algebraic difference of the two forces.
So we can say



So here net force on the car will be 150 N towards right and hence it will accelerate due to same force.