<u>Metal detectors work by transmitting an electromagnetic field from the search coil into the ground. Any metal objects (targets) within the electromagnetic field will become energised and retransmit an electromagnetic field of their own. The detector’s search coil receives the retransmitted field and alerts the user by producing a target response. metal detectors are capable of discriminating between different target types and can be set to ignore unwanted targets.
</u>
1. Search Coil
The detector’s search coil transmits the electromagnetic field into the ground and receives the return electromagnetic field from a target.
2. Transmit Electromagnetic Field (visual representation only - blue)
The transmit electromagnetic field energises targets to enable them to be detected.
3. Target
A target is any metal object that can be detected by a metal detector. In this example, the detected target is treasure, which is a good (accepted) target.
<em>hope this helps PLEASE MARK AS BRAINLIEST:)</em>
1. it is difficult to search for it . Because infrared rays will never penetrate through earth atmosphere.
2. we are unaware of how it looks like and we only know it is red and will glow . A damaged star also looks like this.
3. Dust also makes is hard to detect Dyson spheres . So we will get confused between Dyson sphere and a star surrounded by dust.
Answer: Got It!
<em>Explanation: </em>let s = speed at launch
v = 0 at top = s sin 63 - g t
so at top
t = s sin 63/g = .0909 s
h = 13.6 = s sin 63 t - 4.9 t^2
13.6 = .081s^2 - .0405 s^2
s^2 = 336
s = 18.3 m/s
0 0
Matter can exist in one of three main states: solid, liquid, or gas. Solid matter is composed of tightly packed particles. A solid will retain its shape; the particles are not free to move around. Liquid matter is made of more loosely packed particles. Hopefully this helps:)
Answer:
Hello friend where is the figure of the question