Is a process in which One set of substances, called REACTANTS, is converted to a new set of substances is called PRODUCTS.
--In other words, a chemical reaction is the process by which a chemical change occurs.
Answer
1.0/5
4
IlaMends
Ambitious
2.1K answers
12.9M people helped
Explanation:
When pH of the solution is 11.
..(1)
At pH = 11, the concentration of ions is .
When the pH of the solution is 6.
..(2)
At pH = 6, the concentration of ions is .
On dividing (1) by (2).
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is .
Difference between the ions at both pH:
This means that Hydrogen ions in a solution at pH = 7 has ions fewer than in a solution at a pH = 6
The answer to this question would be a transverse wave, because the vibration travels parallel to the direction that the wave is traveling.
Answer:
D. When the box is placed in an elevator accelerating upward
Explanation:
Looking at the answer choices, we know that we want to find out how the normal force varies with the motion of the box. In all cases listed in the answer choices, there are two forces acting on the box: the normal force and the force of gravity. These two act in opposite directions: the normal force, N, in the upward direction and gravity, mg, in the downward direction. Taking the upward direction to be positive, we can express the net force on the box as N - mg.
From Newton's Second Law, this is also equal to ma, where a is the acceleration of the box (again with the upward direction being positive). For answer choices (A) and (B), the net acceleration of the box is zero, so N = mg. We can see how the acceleration of the elevator (and, hence, of the box) affects the normal force. The larger the acceleration (in the positive, i.e., upward, direction), the larger the normal force is to preserve the equality: N - mg = ma, N = ma+ mg. Answer choice (D), in which the elevator is accelerating upward, results in the greatest normal force, since in that case the magnitude of the normal force is greater than gravity by the amount ma.