it would be at either A or B.
During the first phase of acceleration we have:
v o = 4 m/s; t = 8 s; v = 13 m/s, a = ?
v = v o + a * t
13 m/s = 4 m / s + a * 8 s
a * 8 s = 9 m/s
a = 9 m/s : 8 s
a = 1.125 m/s²
The final speed:
v = ?; v o = 13 m/s; a = 1.125 m/s² ; t = 16 s
v = v o + a * t
v = 13 m/s + 1.125 m/s² * 16 s
v = 13 m/s + 18 m/s = 31 m/s
Electromagnetic radiation is an energy that is known as light. so electromagnetic radiation will have the same speed as the speed of light which is 3 x 10^8 m/s. so the distance it travel at 55 x 10^-6 s is:
D = ( 3 x 10^8 m/s ) ( 55 x 10^-6 s )
D = 16500 m
Answer: • using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use
Explanation:
The options that will ensure laboratory safety during the experiment will be:
• using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use.
We should note that the beaker tongs are simply used in the holding of the beakers that have hot liquids in them. Also, it s vital for the hot plate to be turned off after its use so as to prevent accident.