Refer to the figure shown below.
g = 9.8 m/s², the acceleration due to gravity.
W = mg, the weight of the mug.
θ = 17°, the angle of the ramp.
Let μ = the coefficient of static friction.
The force acting down the ramp is
F = W sin θ = W sin(17°) = 0.2924W N
The normal reaction is
N = W cosθ = W cos(17°) = 0.9563W N
The resistive force due to friction is
R = μN = 0.9563μW N
For static equilibrium,
μN = F
0.9563μW =0.2924W
μ = 0.3058
The frictional force is F = μN = 0.2924W
The minimum value of μ required to prevent the mug from sliding satisfies
the condition
R > F
0.9563μW > 0.2924W
μ > 002924/.9563 = 0.306
Answer:
The frictional force is 0.2924mg, where m = the mass of the mug.
The minimum coefficient of static friction is 0.306
<h3><u>Answer;</u></h3>
C. 12 units
<h3><u>Explanation;</u></h3>
- If the strength of the magnetic field at B is 3 units, the strength of the magnetic field at A is 12 units
- Magnetic field strength is one of two ways that the intensity of a magnetic field can be expressed.
- <em><u>The strength of the field is inversely proportional to the square of the distance from the source. This means that If the distance between two points in magnetic filed is doubled the magnetic force between them will fall to a quarter of the initial value. </u></em>
- <em><u>On the other hand, if the distance between two magnets is halved the magnetic force between them will increase to four times the initial value.</u></em>
Answer:
|F| = 393750 N
Explanation:
Given that,
Total mass of the train, m = 750000 kg
Initial speed, u = 84 m/s
Final speed, v = 42 m/s
Time, t = 80 s
We need to find the net force acting on the train. The formula for force is given by :
F = ma

So, the magnitude of net force is 393750 N.
Adhesive.
Adhesive is the force of attraction between molecules of different kind. Liquid flows upward the wick because the adhesive force between the wick and the liquid is higher than cohesive forces in the liquid.
When the adhesive force between the wick and the liquid is high we have capillarity taking place. This cause the liquid to move up the wick.