1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
2 years ago
12

What is the formula for moment in physics

Physics
2 answers:
goblinko [34]2 years ago
8 0
<span>Moment = Force × Perpendicular distance from the pivot</span>
Viefleur [7K]2 years ago
4 0
We define the turning effect with the equation: Moment = Force × Perpendicular distance from the pivot. Since force is measured in newtons (N) and distances in metres (m) the unit for a moment is the newton-metre (Nm). Moments can act in two ways: clockwise or anticlockwise.
You might be interested in
NaOH + FeCl3* Na Cl + Fe 10H)3<br> balanced
zvonat [6]
3NaOH + FeCl3 → 3NaCl + Fe(OH)3
8 0
2 years ago
Three positive charges A, B, and C, and a negative charge D are placed in a line as shown in the diagram. All four charges are o
polet [3.4K]

Answer:

a. charge C experiences the greatest net force, and charge B receives the smallest net force

b. ratio=9

Explanation:

<u>Electrostatic Force</u>

Two point-charges q_1 and q_2 separated a distance d will exert a force on each other of a magnitude given by the Coulomb's formula

\displaystyle F=\frac{k\ q_1\ q_2}{r^2}

Where k is the proportional constant of value

k=9*10^9\ N.m^2/c^2

The diagram provided in the question shows four identical charges (let's assume their value is Q) separated by identical distance (of value d). The force between the charges next to others is

\displaystyle F_1=\frac{k\ Q\ Q}{d^2}

\displaystyle F_1=\frac{k\ Q^2}{d^2}

The force between charges separated 2d is

\displaystyle F_2=\frac{k\ Q^2}{(2d)^2}

\displaystyle F_2=\frac{k\ Q^2}{4d^2}

And the force between the charges A and D is

\displaystyle F_3=\frac{k\ Q^2}{(3d)^2}

\displaystyle F_3=\frac{k\ Q^2}{9d^2}

Now, let's analyze each charge and the force applied to them by the others

Let's recall equally signed charges repel each other and differently signed charges attrach each other

Charge A. It receives force to the left from B and C and to the right from D

\displaystyle F_A=-F_1-F_2+F_3=-\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{9d^2}

\displaystyle F_A=\frac{k\ Q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})

\displaystyle F_A=-\frac{41}{36}F_1

Charge B. It receives force to the right from A and D and to the left from C

\displaystyle F_B=F_1-F_1+F_2=\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{4d^2}

\displaystyle F_B=\frac{1}{4}F_1

Charge C. It receives forces to the right from all charges.

\displaystyle F_C=F_2+F_1+F_1=\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{d^2}

\displaystyle F_C=\frac{9}{4}F_1

Charge D. It receives forces to the left from all charges

\displaystyle F_D=-F_3-F_2-F_1=-\frac{k\ Q^2}{9d^2}-\frac{k\ Q^2}{4d^2}-\frac{k\ Q^2}{d^2}

\displaystyle F_D=-\frac{49}{36}F_1

Comparing the magnitudes of each force is just a matter of computing the fractions

\displaystyle \frac{41}{36}=1.13,\ \frac{1}{4}=0.25,\ \frac{9}{4}=2.25,\ \frac{49}{36}=1.36

a.

We can see the charge C experiences the greatest net force, and charge B receives the smallest net force

b.

The ratio of the greatest to the smallest net force is

\displaystyle \frac{\frac{9}{4}}{\frac{1}{4}}=9

The greatest force is 9 times the smallest net force

7 0
3 years ago
A small box is held in place against a rough vertical wall by someone pushing on it with a force directed upward at 27 ∘ above t
ycow [4]

Answer:

Explanation:

Applied force, F = 18 N

Coefficient of static friction, μs = 0.4

Coefficient of kinetic friction, μs = 0.3

θ = 27°

Let N be the normal reaction of the wall acting on the block and m be the mass of block.

Resolve the components of force F.

As the block is in the horizontal equilibrium, so

F Cos 27° = N

N = 18 Cos 27° = 16.04 N

As the block does not slide so it means that the syatic friction force acting on the block balances the downwards forces acting on the block .

The force of static friction is μs x N = 0.4 x 16.04 = 6.42 N   .... (1)

The vertically downward force acting on the block is mg - F Sin 27°

                                                      = mg - 18 Sin 27° = mg - 8.172    ... (2)

Now by equating the forces from equation (1) and (2), we get

mg - 8.172 = 6.42

mg = 14.592

m x 9.8 = 14.592

m = 1.49 kg

Thus, the mass of block is 1.5 kg.  

6 0
3 years ago
A car is strapped to a rocket (combined mass = 661 kg), and its kinetic energy is 66,120 J.
aliina [53]

Answer:

9.43 m/s

Explanation:

First of all, we calculate the final kinetic energy of the car.

According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

W=K_f - K_i

where

W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)

K_f is the final kinetic energy

K_i = 66,120 J is the initial kinetic energy

Solving,

K_f = K_i + W = 66,120 + (-36,733)=29,387 J

Now we can find the final speed of the car by using the formula for kinetic energy

K_f = \frac{1}{2}mv^2

where

m = 661 kg is the mass of the car

v is its final speed

Solving for v, we find

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(29,387)}{661}}=9.43 m/s

3 0
3 years ago
What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a period of 1.7357 s?​
Ksju [112]

Answer:

Explanation:

T = 2π\sqrt{L/g}

(T / 2π)² = L/g

g = 4π²L/T²

g = 4π²(0.75000)/(1.7357)²

g = 9.82814766...

g = 9.8281 m/s²

6 0
2 years ago
Other questions:
  • A mass m at the end of a spring vibrates with a frequency
    13·1 answer
  • If 125 j of heat energy is applied to a block of silver weighing 29.3 g, by how many degrees will the tem- perature of the silve
    5·1 answer
  • Whenever you work a physics problem you should get into the habit of thinking about whether the answer is physically realistic.
    15·2 answers
  • A roller coaster at the top of a 45 meter hill has a mass of 5000 kilograms. What is the potential energy?
    5·1 answer
  • An object pulled to the right by two forces has an acceleration of 2.5m/s2. The free-body diagram shows the forces acting on the
    14·1 answer
  • What does the law of conservation of mass state?
    8·2 answers
  • Which is true about density?
    15·2 answers
  • Un recipiente contiene 224 dm3 de Ozono de masa 4.561 Kg a 51.09 grados celsius. Calcula la presión del Ozono
    15·1 answer
  • Mary Jo went on riding her horse through the trails. Her pace was 8 km/hr. She left at 8:30 am and got back to the barn at 9:00
    10·1 answer
  • A ball experiences forces of 14 N [N] and 9.2 N [W]. A Free Body diagram is required. What is the acceleration of the ball if it
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!