Explanation:
a. The velocity of the wind as a vector in component form will be represented as v vector:
![v=30j](https://tex.z-dn.net/?f=v%3D30j)
b.The velocity of the jet relative to the air as a vector in component form will be represented as u vector
![u=475i](https://tex.z-dn.net/?f=u%3D475i)
c. The true velocity of the jet as a vector will be represented as w:
![w=u+v](https://tex.z-dn.net/?f=w%3Du%2Bv)
![w=475i+30j](https://tex.z-dn.net/?f=w%3D475i%2B30j)
d. The true speed of the jet will be calculated as:
![IwI=\sqrt{(475)^2+(30)^2}](https://tex.z-dn.net/?f=IwI%3D%5Csqrt%7B%28475%29%5E2%2B%2830%29%5E2%7D)
![IwI=\sqrt{225625+900}](https://tex.z-dn.net/?f=IwI%3D%5Csqrt%7B225625%2B900%7D)
![IwI=\sqrt{226525}](https://tex.z-dn.net/?f=IwI%3D%5Csqrt%7B226525%7D)
![IwI=476 mi/h](https://tex.z-dn.net/?f=IwI%3D476%20mi%2Fh)
e. The direction of the jet will be:
![tita=tan^{-1}\frac{30}{475}](https://tex.z-dn.net/?f=tita%3Dtan%5E%7B-1%7D%5Cfrac%7B30%7D%7B475%7D)
![tita=tan^{-1}(0.0632)](https://tex.z-dn.net/?f=%20tita%3Dtan%5E%7B-1%7D%280.0632%29)
![tita=3.62degrees,or,N86.38degreesS](https://tex.z-dn.net/?f=tita%3D3.62degrees%2Cor%2CN86.38degreesS)
Answer:
<u>Inelastic collision:</u>
A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.
<u>Characteristics of an inelastic collision:</u>
- <em>the momentum of the system is conserved</em>
- <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>
<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>
<u>Elastic </u><u>collision</u><u>:</u>
A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.
<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>
- <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
- <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>
In everyday life, no collision is perfectly elastic.
__________________
ANSWER:
<u>Given examples:</u>
- Two cars colliding with each other form an example of inelastic collision.
<u>Reason:</u>
<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>
- A ball bouncing after colliding with a surface is an example of elastic collision
<u>Reason:</u>
<em>(a very less amount of kinetic energy is lost)</em>
Answer:
Hope i could help!
Explanation:
so all but one light could be burned out, and the last one will still function.
Answer:
259.62521 seconds
Explanation:
= Mass of astronaut = 87 kg
= Mass of wrench = 0.57 kg
= Velocity of astronaut
= Velocity of wrench = 22.4 m/s
Here, the linear momentum is conserved
![m_1v_1=m_2v_2\\\Rightarrow v_1=\frac{m_2v_2}{m_1}\\\Rightarrow v_1=\frac{0.57\times 22.4}{87}\\\Rightarrow v_1=0.14675\ m/s](https://tex.z-dn.net/?f=m_1v_1%3Dm_2v_2%5C%5C%5CRightarrow%20v_1%3D%5Cfrac%7Bm_2v_2%7D%7Bm_1%7D%5C%5C%5CRightarrow%20v_1%3D%5Cfrac%7B0.57%5Ctimes%2022.4%7D%7B87%7D%5C%5C%5CRightarrow%20v_1%3D0.14675%5C%20m%2Fs)
Time = Distance / Speed
![Time=\frac{38.1}{0.14675}=259.62521\ s](https://tex.z-dn.net/?f=Time%3D%5Cfrac%7B38.1%7D%7B0.14675%7D%3D259.62521%5C%20s)
The time taken to reach the ship is 259.62521 seconds
Answer:
t = 13.7 s or t = 14 s with proper significant figures
Explanation:
The initial speed is 0 m/s since the car starts from rest, acceleration is 5.5 m/s2 and distance is 523 m.
Since we have initial speed, acceleration and distance we can use the following formula to find the time. We can now use algebra to work out our answer.
d = vt +
at²
523 = (0)t + (
)(5.5)t²
523 = 2.8t²
186.8 = t²
13.7 s = t
(t = 14 s with proper significant figures)