The statement: Mass affects how fast an object falls is true.
(a) Let
be the maximum linear speed with which the ball can move in a circle without breaking the cord. Its centripetal/radial acceleration has magnitude

where
is the radius of the circle.
The tension in the cord is what makes the ball move in its plane. By Newton's second law, the maximum net force on it is

so that

Solve for
:

(b) The net force equation in part (a) leads us to the relation

so that
is directly proportional to the square root of
. As the radius
increases, the maximum linear speed
will also increase, so the cord is less likely to break if we keep up the same speed.
Answer:
The object is dropped, we know the initial velocity is zero. Once the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-dimensional and has constant acceleration of magnitude g.
No so sure
Explanation:
Hope it helps
The molecules of a solid vibrate faster so that they start spreading out to become a liquid. This energy makes them vibrate faster so the bonds between molecules can't interact all that well anymore creating more distance. The stronger the bonds between the molecules the higher the energy (temperature) has to be to get them away from each other. Hope I didn't confuse you too much!