Because elemental mercury is a liquid at a room temperature
Answer: Compounds.
Explanation:
Compounds are formed when an unstable element combines with other elements, they do this by sharing electrons within their outmost shell. Compounds forms when there is a chemical bonding between two or more elements. Examples of compounds includes carbon dioxide (C, O) water (H and O), Sodium chloride (Na, Cl), methane, etc.
Answer:
d. 127 g/mol.
Explanation:
Hello!
In this case, since we have the amount of molecules of this this compound, we are able to compute the moles out there by using the Avogadro's number:

Which correspond to the moles of X2. Then, by using the mass we are able to compute the molar mass of X2:

It means that the atomic mass of X halves the molar mass of X2, which is then d. 127 g/mol.
Best regards!
Answer: 1 C6H12O6===> 2 C2H5OH + 2 CO2
75 In the space in your answer booklet, draw a structural formula for the alcohol formed in this reaction. [1]
Explanation:
Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation: