Answer:
See explanation below
Explanation:
First, let's write again the reaction:
CH₃COO⁻ + H(CH₃)₃N⁺ <-----------> CH₃COOH + (CH₃)₃N
Now that the reaction is here, let's remember the basis of the bronsted - lowry theory:
An acid (HA) is a substance that can lose a proton (Hydrogen atom) to form a conjugate base. A base is a substance that accepts the proton (Hydrogen) and form a conjugate acid.
According to this definition, let's see the reaction again.
In the reactants, we see the CH3COO and the H(CH3)N. and the products are CH3COOH and (CH3)3N. The difference? well, we can see that the CH3COO now has a Hydrogen atom, this means that the CH3COO accepted the Hydrogen; this hydrogen was provided by the H(CH3)3N.
Therefore, the acid in this reaction is the H(CH₃)₃N⁺ and the conjugate base will be the (CH₃)₃N
The base in this reaction is the CH₃COO⁻ while the conjugate acid will be the CH₃COOH
Answer:
2SO₂(g) + O₂(g) ↔ 2SO₃(g) Kc = 15M⁻¹
The sets are:
(A) (SO₂)=0.16M; (O₂)=0.20M; (SO₃)=0.50M
(B) (SO₂)=0.20M; (O₂)=0.60M; (SO₃)=0.60M
(C) (SO₂)=0.50M; (O₂)=0.60M; (SO₃)=0.15M
The reaction quotient is
Q = ![\frac{[SO_{3}]^2}{[SO_{2}]^{2}*[O_{2}] }](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSO_%7B3%7D%5D%5E2%7D%7B%5BSO_%7B2%7D%5D%5E%7B2%7D%2A%5BO_%7B2%7D%5D%20%7D)
- If Q < Kc, then the reaction will proceed towards the right (products)
- If Q > Kc, then the reaction will proceed towards the left (reactants)
- If Q = Kc, then we're at equilibrium.
Now we <u>calculate Q for each of the sets</u>:
(A) Q = 0.50² / (0.16²*0.20) = 48.8
Q > Kc. So the reaction will proceed towards the left.
(B) Q = 0.60² / (0.20²*0.60) = 15
Q = Kc. So the reaction is at equilibrium.
(C) Q = 0.15² / (0.50²*0.60) = 0.15
Q < Kc. So the reaction will proceed towards the right.
Solve these problems like weighted averages:
The first one:
Multiply the masses (isotope numbers) by the decimal form of the percentage. Add them
0.076 (6) + 0.924 (7) = 6.924
The second one:
0.2 (10) + 0.8 (11) = 10.8
If you think about it, these answers make sense. 6.924 is much closer to 7 than to 6 (since there's a lot more lithium-7 than there is lithium-6). 10.8 is closer to 11 than to 10.
For the answer to the question above,the gas can be decomposed to yield 2.09 parts by mass of uranium for every 1 part by mass of fluorine.If the relative mass of a uranium atom is 238 and the relative mass of a fluorine atom is 19, the number of fluorine atoms that are combined with one uranium atom. is 6
Food engineering combines physical sciences, microbiology and engineering for the efficient production of food.