Answer:
the smallest particle of a chemical element that can exist.
Explanation:
Answer:
A sample of an ideal gas has a volume of 2.21 L at 279 K and 1.01 atm. Calculate the pressure when the volume is 1.23 L and the temperature is 299 K.
You need to apply the ideal gas law PV=nRT
You have the pressure, P=1.01 atm
you have the volume, V = 2.21 L
The ideal gas constant R= 0.08205 L. atm/ mole.K at 273 K
find n = PV/RT = (1.01 atm x 2.21 L / 0.08205 L.atm/ mole.K x 273 K)
n= 0.1 mole, Now find the pressure for n=0.1 mole, T= 299K and
L=1.23 L
P=nRT/V= 0.1mole x 0.08205 (L.atm/ mole.K x 299 k)/ 1.23 L
= 1.994 atm
Explanation:
The density does not change because it is still the same liquid as before
Answer:
ionic
Explanation:
Ionic bonds exist between Ca and F ions in CaF₂. Ionic bonds are interatomic bonds formed by the transfer of electrons from one atom to the other.
The donor atom here is Ca and it has two valence electrons. Fluorine is the receiving atom with 7 electrons in its outermost shell.
Ca would give one each of its two outermost electrons to the fluorine atoms to complete their octet. Ca ion would now resemble Argon and the flourine atoms would look more like Neon atoms.
This is an ionic bond