1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
4 years ago
14

When you do stretches, stretch only until you feel the _____ in your muscles.

Physics
1 answer:
solong [7]4 years ago
4 0

Answer:

<em>pulling</em>

Explanation:

When stretching, the right way to stretch is to stretch until one feels the tension pull in the muscle. This pull is then held and sustained for a period of about 15 to 60 seconds. This considered the safest way to stretch, and it gives the muscles and connective tissue time to “reset” the stretch reflex.

You might be interested in
(LC)Light fixtures and placement that create shadows on the set, that obscure or completely hide action in certain areas of the
Sedaia [141]

The correct answer is true.

It is true that light fixtures and placement that create shadows on the set, that obscure or completely hide action in certain areas of the set, or that change as the main character’s emotional state changes are all ways that lighting can be used to heighten the drama and suspense in dramatic films.

Lighting plays an important role in film making because it can create scenes that enhance the de drama of the moment or the right mood that the director wants to share. Lighting in the film is an art because the basic principle is that the scene needs to look natural. From that principle, filmmakers and light specialist cand create many kinds of dramatic or jubilation moments if they know how to apply light principles to each scene.

5 0
3 years ago
I would love to stretch a wire from our house to the Shop so I can 'call' my husband in for meals. The wire could be tightened t
dezoksy [38]
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".

Solution:
The fundamental frequency in a standing wave is given by
f= \frac{1}{2L} \sqrt{ \frac{T}{m/L} }
where L is the length of the string, T the tension and m its mass. If  we plug the data of the problem into the equation, we find
f= \frac{1}{2 \cdot 24 m} \sqrt{ \frac{240 N}{0.05 kg/m} }=1.44 Hz

The wavelength of the standing wave is instead twice the length of the string:
\lambda=2 L= 2 \cdot 24 m=48 m

So the speed of the wave is
v=\lambda f = (48 m)(1.44 Hz)=69.1 m/s

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
t= \frac{L}{v}= \frac{24 m}{69.1 m/s}=0.35 s
7 0
4 years ago
True or False
Ann [662]
The is true because I said so
7 0
3 years ago
Read 2 more answers
An airplane is flying at a speed of 200 m/s in level flight at an altitude of 800 m. A package is to be dropped from the airplan
MArishka [77]

Answer:

2560m or 2.56km (rounded to 3 significant figures)

Explanation:

First, list all known and desired values/variables (initial vertical velocity is 0 as the plane is kept level and vertical acceleration is just gravity):

Vertical \ velocity \ (\frac{m}{s} ) =  u_{v} = 0 \\\\ Horizontal \ velocity \ (\frac{m}{s} ) =  u_{h} = 200\\\\ Vertical \ acceleration \ (\frac{m}{s^{2} } ) =  a_{v} =  9.8 \\\\ Horizontal \ acceleration \ (\frac{m}{s^{2} } ) =  a_{h} =  0 \\\\ Vertical \ displacement \ (m) = s_{v} = 800 \\\\ Horizontal \ displacement \ (m) = s_{h}

The horizontal displacement is going to be the distance travelled, horizontally of course, once the package is released;

First thing to understand is that the vertical and horizontal components are to be dealt with separately because they don't affect each other;

Since there is no horizontal acceleration (ignoring air resistance), we simply require a velocity and time to find the horizontal displacement, using the formula v = d/t (or speed = distance/time);

What we have is the horizontal velocity but we don't have the time taken;

One thing we know is that the time elapsed for the vertical fall of 800m and for the horizontal displacement must be the same;

What we do, therefore, is find the time taken for the vertical displacement using the formula, s = ut + ¹/₂·at², since we know the vertical velocity, height and acceleration:

800 = (0)t + ¹/₂·(9.8)t²

800 = 4.9t²

t² = 163.26...

t = 12.77...

We now have the time taken for the vertical fall and the horizontal displacement, we can use this with the horizontal velocity we know already and get the horizontal displacement:

u_{h} = \frac{s_{h} }{t} \\\\ 200 = \frac{s_{h} }{12.77...} \\\\ s_{h} = 200(12.77...) \\\\ s_{h} = 2555.5...

7 0
3 years ago
3. How can we determine the volume of a regular object?
JulsSmile [24]
Length•Width•Height is the answer
4 0
3 years ago
Other questions:
  • The diagram shows a ramp with a toy car at the bottom. A string attached to the front of the car and the string goes over a pull
    12·1 answer
  • Which of the following cools the air in a household refrigerator?
    10·1 answer
  • A car has a momentum of 20,000 kg • m/s. What would the car’s momentum be if its velocity doubles?
    10·2 answers
  • How is heat related to phase changes​
    11·1 answer
  • The work function of titanium metal is 6.93 x 10-19 J. Calculate the kinetic energy of the ejected electrons if light of frequen
    14·1 answer
  • All energy,potential kinetic within a specific system
    8·1 answer
  • true or false. because the speed of an object can change from one instant to the next, dividing the distance covered by the time
    15·2 answers
  • Which of the following is a characteristic of a base?
    11·1 answer
  • What direction would the north pole of a bar magnet point if you were to hang the bar magnet from a thin string?.
    14·1 answer
  • Classify each of the following statements as a characteristic (a) of electric forces only, (b) of magnetic forces only, (c) of b
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!