Answer:
The net electric field at the midpoint is 6.85 x 10^7 N/C.
Explanation:
q = − 8.3 μC
q' = + 7.8 μC
d = 9.2 cm
d/2 = 4.6 cm
The electric field due to the charge q at midpoint is
leftwards
The electric field due to the charge q' at midpoint is

The resultant electric field at mid point is
E'' = E + E' = (3.53 + 3.32) x 10^7 = 6.85 x 10^7 N/C
Yes because something that has been electrically charged can make other things move without touching them ( this is called force without contact)
Hoped this helped :)
Answer:
(a). Energy is 64,680 J
(b) velocity is 51.43m/s
(c) velocity in mph is 115.0mph
Explanation:
(a).
The potential energy
of the payload of mass
is at a vertical distance
is
.
Therefore, for the payload of mass
at a vertical distance of
, the potential energy is


(b).
When the payload reaches the bottom of the shaft, all of its potential energy is converted into its kinetic energy; therefore,




(c).
The velocity in mph is


When pushing a toy truck up an inclined plane, the force that makes the truck goes up is the force that the child uses to push the truck. (The force that pushes
Therefore the correct option is C.