1). Take a sample of the substance. The sample should be the largest
possible that will allow it to be be easily handled and the following steps
to be performed with it.
(The density doesn't depend on the size of the sample, and every sample
of the same substance has the same density. But using a larger sample
can improve the accuracy of the measurements you make, and therefore
improve the accuracy of the density you derive for the substance.)
2). Ask or measure the mass of the sample.
3). Ask or measure the volume of the sample.
4). Divide the mass by the volume. Their quotient is the density
of the substance.
It's usually taken from <span>400 to 700 nm.</span>
Answer:
The bullet that is fired will spend longer in the air, hitting the ground after the dropped bullet.
Explanation:
Using the equation: x
= x
0 +
v
t
If we neglect the effects of air resistance, the horizontal motion is a constant velocity.
The horizontal displacement = (velocity X cosθ)
So, the fired bullet has to travel horizontally before falling which takes a longer time compared to a bullet dropped where it is, height = 1/2 gt^2
gravity, g = 9.8 m/s2.
Answer:
50 N
4.2 N
Explanation:
i) The force needed to balance the boom is 2400 N. If the weight of the counterbalance is 2350 N, then the downward force the park attendant must apply is 50 N.
ii) When the boom is resting on the end support, the normal force is:
∑τ = Iα
-W (0.50) + F (3.0) − N (6.0) = 0
-0.50 W + 3.0 F = 6.0 N
N = (-0.50 W + 3.0 F) / 6.0
N = (-0.50 × 2350 + 3.0 × 400) / 6.0
N ≈ 4.2