To solve this problem we should apply Newton's third law for which it is defined that there must be an equal reaction in the opposite direction.
From this law, if Car A generates a force on car B, that car must have opposed a force exactly the same but in the opposite direction. The car A moved to the left and generates a force of 900lb so the magnitude of the force in the car B is also 900lb but to the right (opposite direction to the first car)
The correct option is 900lb to the right.
Answer:
m = 81281.5 pounds.
Explanation:
Given that,
Force, F = 73 kN
Acceleration of the space shuttle, a = 16000 mi/h²
1 miles/h² = 0.0001241 m/s2
16000 mi/h² = 1.98 m/s²
We need to find the mass of the spacecraft.
According to Newton's second law,
F = ma
m is mass of the spacecraft

Since, 1 kg = 2.20462 pounds
m = 81281.5 pounds
Hence, the mass of the spacecraft is 81281.5 pounds.