Total amount of energy would remain constant according to law of conservation of energy. i.e., 50 Joules
In short, Your Answer would be Option C) <span>50 Joules because as energy converts from one form to another, it cannot be created or destroyed during the conversion.
</span>
Hope this helps!
Answer:
The Resultant Induced Emf in coil is 4∈.
Explanation:
Given that,
A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.
To find :-
find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).
So,
Emf induced in the coil represented by formula
∈ =
...................(1)
Where:
.
{ B is magnetic field }
{A is cross-sectional area}
.
No. of turns in coil.
.
Rate change of induced Emf.
Here,
Considering the case :-
&
Putting these value in the equation (1) and finding the new emf induced (∈1)
∈1 =
∈1 =
∈1 =![4 [-N\times\frac{d\phi}{dt}]](https://tex.z-dn.net/?f=4%20%5B-N%5Ctimes%5Cfrac%7Bd%5Cphi%7D%7Bdt%7D%5D)
∈1 = 4∈ ...............{from Equation (1)}
Hence,
The Resultant Induced Emf in coil is 4∈.
Answer:No,a smaller object would have more acceleration because it would take less force to move.
Answer:
(A) Torque required is 21.205 N-m
(b) Wok done will be equal to 1199.1286 j
Explanation:
We have given moment of inertia 
Wheel deaccelerate from 135 rpm to 0 rpm
135 rpm = 
Time t = 8 sec
So angular speed
and 
Angular acceleration is given by 
Torque is given by torque 

Work done to accelerate the vehicle is

