Decrease the amount of work done.
Answer:
Explanation:
1.wrap bar magnet in a plastic baggie and remove the iron filings from the mixture by using a bar magnet. Place a small piece of scrap paper on the scale and “tare” the scale. Then place filings on the scrap paper and record (e) the mass of the iron filings. Don't throw out the iron–save it to be recollected.
2.When sand is added to water it either hangs in the water or forms a layer at the bottom of the container. Sand therefore does not dissolve in water and is insoluble. It is easy to separate sand and water by filtering the mixture. Salt can be separated from a solution through evaporation.
3.Sand (mostly silicon dioxide) is not.
Pour the salt and sand mixture into a pan.
Add water. ...
Heat the water until the salt dissolves. ...
Remove the pan from heat and allow it to cool until it's safe to handle.
Pour the salt water into a separate container.
Now collect the sand.
Pour the salt water back into the empty pan.
Heat the salt water until the water boils. Continue boiling it until the water is gone and you're left with the salt.
Another way you can separate the salt water and sand is to stir up the sand/salt water and pour it through a coffee filter to capture the sand.
The change in surface area of Gaussian surface with radius (r) is 8πr.
<h3>
Electric field from Coulomb's law</h3>
The electric field experienced by a charge is calculated as follows;

where;
- E is the electric field
- Q is the charge
- r is the radius
The electric field reduces by a factor of 
<h3>Surface area of a Gaussian surface;</h3>
The surface area of a sphere is given as;

<h3>Change in area with r</h3>

Thus, the change in surface area of Gaussian surface with radius (r) is 8πr.
Learn more about area of Gaussian surfaces here: brainly.com/question/17060446
Answer:
Explanation:
The horizontal distance traveled by the projectile is given by the formula

The formula for the time of flight is given by

Case I: when the launch angle is 30°
So, 

Horizontal velocity = u Cos 30 = 0.866 u

Case II: when the launch angle is 60°


Horizontal velocity = u Cos 60 = 0.5 u

By observing the case I and case II, we conclude that
R1 = R2
Horizontal velocity 1 > Horizontal velocity 2
T1 < T2