The frequency of the wave is 4 Hz
Answer:1). Distance of far point x=0.9m
Therefore, since the image is virtual
-f=-x = -0.9m
Power of the concave lenses = 1/f = 1/-0.9
= -1.11D
2 ) near point is 21cm = 0.21m
Power = 4-1/near point
= 4/0.21
= 14.2D.
Answer:
the range or the ball is 48.81 m
Explanation:
given;
Nicole throws a ball at 25 m/s at an angle of 60 degrees abound the horizontal.
find:
What is the range of the ball?
solution:
let Ф = 25°
Vo = 25 m/s
<u>consider x-motion using time of fight: x = Vox * t</u>
where x = R = range
t =<u> 2 Voy </u>
g
R =<u> Vo² sin (2Ф)</u>
g
plugin values into the formula:
R = <u>(25)² sin (2*25) </u>
9.81
R = 48.81 m
therefore, the range or the ball is 48.81 m
A. Angular momentum is always conserved would be the correct answer.
This is because like linear momentum (mvmv), angular momentum (r×mvr×mv) is a conserved quantity, where rr is the vector from the center of rotation. For a skater holding a static pose, for each particle making up her body, the contribution in magnitude to the total angular momentum is given by mirivimirivi. Thus bringing in her arms reduces riri for those particles. In order to conserve angular momentum, there is then an increase in the angular velocity.
hope this helps!