The angle of incoming solar radiation influences seasonal temperatures of locations at different latitudes. ... At higher latitudes, the angle of solar radiation is smaller, causing energy to be spread over a larger area of the surface and cooler temperatures.
I cannot see the whole equation.Therefore I shall not answer
Answer:
Dana filtered the sample and larger granules of the sample were left behind.
Explanation:
If a substance is pure, it will have a uniform composition throughout. It will not separate into particles of various sizes.
One of the characteristics of pure substances is that they are homogeneous. A mixture is definitely made up of particles of various sizes.
Since the particles was filtered and larger granules were left behind, the sample has been separated by a physical method (filtration). Only a mixture can be separated by physical methods. It is not a pure substance.
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
Answer:
A)
,
, 
A = 1.5×
, A = 1.9×
, A=1.5×
B) 4.469
Explanation:
From Arrhenius equation

where; K = Rate of constant
A = Pre exponetial factor
= Activation Energy
R = Universal constant
T = Temperature in Kelvin
Given parameters:




taking logarithm on both sides of the equation we have;

since we have the rate of two different temperature the equation can be derived as:


= 19846.04×7.544×
= 1.497
=
= 4.469