Answer:
see explanation
Explanation:
You are missing the chart with the rates and time to do this, however, I wll do it with a similar exercise here, and you only need to replace the procedure with your data:
See the attached table.
From the left we have:
r = 1/2 (50 + 48 + 46 + 44 + 42 + 40) = 135 L/min
From the right we have:
r = 1/2 (48 + 46 +44 + 42 + 40 + 38) = 129 L/min.
And this should be the correct answer. Watch your chart and replace if it's neccesary.
Smoother because it will increase energy and when the energy increases it’ll create heat also . Example: A car racing on a smooth road it’ll go faster than a Car speeding on a bumpy and rough road , Hope that helps .
Answer:
284.4233 N/m
Explanation:
k = Spring constant
x = Compression of spring = 14.5 cm
U = Potential energy = 2.99 J
The potential energy of a spring is given by

Rearranging to get the value of k

The spring constant is 284.4233 N/m
To answer the two questions, we need to know two important equations involving centripetal movement:
v = ωr (ω represents angular velocity <u>in radians</u>)
a = 
Let's apply the first equation to question a:
v = ωr
v = ((1800*2π) / 60) * 0.26
Wait. 2π? 0.26? 60? Let's break down why these numbers are written differently. In order to use the equation v = ωr, it is important that the units of ω is in radians. Since one revolution is equivalent to 2π radians, we can easily do the conversion from revolutions to radians by multiplying it by 2π. As for 0.26, note that the question asks for the units to be m/s. Since we need meters, we simply convert 26 cm, our radius, into meters. The revolutions is also given in revs/min, and we need to convert it into revs/sec so that we can get our final units correct. As a result, we divide the rate by 60 to convert minutes into seconds.
Back to the equation:
v = ((1800*2π)/60) * 0.26
v = (1800*2(3.14)/60) * 0.26
v = (11304/60) * 0.26
v = 188.4 * 0.26
v = 48.984
v = 49 (m/s)
Now that we know the linear velocity, we can find the centripetal acceleration:
a = 
a = 
a = 9234.6 (m/
)
Wow! That's fast!
<u>We now have our answers for a and b:</u>
a. 49 (m/s)
b. 9.2 *
(m/
)
If you have any questions on how I got to these answers, just ask!
- breezyツ
Answer:
a) - 72.5°c
b) pressure = 3625.13 Pa
c) density = 0.063 kg/m^3
d) it is a subsonic aircraft
Explanation:
a) Determine Temperature
Temperature at 19.5 km ( 19500 m )
T = -131 + ( 0.003 * altitude in meters )
= -131 + ( 0.003 * 19500 ) = - 72.5°c
b) Determine pressure and density at 19.5 km altitude
Given :
Po (atmospheric pressure at sea level ) = 101kpa
R ( gas constant of air ) = 0.287 KJ/Kgk
T = -72.5°c ≈ 200.5 k
pressure = 3625.13 Pa
hence density = 0.063 kg/m^3
attached below is the remaining part of the solution
C) determine if the aircraft is subsonic or super sonic
Velocity ( v ) =
=
= 283.8 m/s
hence it is a subsonic aircraft