Energy can be released and absorbed during the formation of a solution, not one or the other. When a solute interacts with the solvent, energy is absorbed so the solvent can overcome the intermolecular bonds of the solute and energy is released, most commonly, in the form of heat, light, or a gaseous byproduct.
Answer:
<h3> b. 1.18</h3>
Explanation:
The fundamental frequency in string is expressed as;
F1 = 1/2L√T/m .... 1
L is the length of the string
T is the tension
m is the mass per unit length
If the tension is increased by 40%, the new tension will be;
T2 = T + 40%T
T2 = T + 0.4T
T2 = 1.4T
The new fundamental frequency will be;
F2 = 1/2L√1.4T/m ..... 2
Divide 1 by 2;
F2/F = (1/2L√1.4T/m)/1/2L√T/m)+
F2/F = √1.4T/m ÷ √T/m
F2/F = √1.4T/√m ×√m/√T
F2/F = √1.4T/√T
F2/F = 1.18√T/√T
F2/F = 1.18
F2 = 1.18F
Hence the fundamental frequency of vibration changes by a factor of 1.18
Answer:
The new frequency (F₂ ) will be related to the old frequency by a factor of one (1)
Explanation:
Fundamental frequency = wave velocity/2L
where;
L is the length of the stretched rubber
Wave velocity = 
Frequency (F₁) = 
To obtain the new frequency with respect to the old frequency, we consider the conditions stated in the question.
Given:
L₂ =2L₁ = 2L
T₂ = 2T₁ = 2T
(M/L)₂ = 0.5(M/L)₁ = 0.5(M/L)
F₂ = ![\frac{\sqrt{\frac{2T}{0.5(\frac{M}{L})}}}{4*L} = \frac{\sqrt{4(\frac{T}{\frac{M}{L}}})}{4*L} = \frac{2}{2} [\frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}] = F_1](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B2T%7D%7B0.5%28%5Cfrac%7BM%7D%7BL%7D%29%7D%7D%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B4%28%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%29%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B2%7D%7B2%7D%20%5B%5Cfrac%7B%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%7D%7B2%2AL%7D%5D%20%3D%20F_1)
Therefore, the new frequency (F₂ ) will be related to the old frequency by a factor of one (1).
The answer is B. desert. Deserts don't get much rainfall to begin with and most of it evaporates.