Answer: [tex]12.415 rad.s^{-1}[/tex]
Explanation: Angular velocity is the rate of change in angular displacement.
We know that:
Angular velocity,
....................(1)
where:
= angular displacement in radians
<u>Given that:</u>
Putting the respective values in eq. (1)


Kinetic energy<span> increases with the square of the velocity (KE=1/2*m*v^2). If the velocity is doubled, the KE quadruples. Therefore, the </span>stopping distance<span> should increase by a factor of four, assuming that the driver is </span>can<span> apply the brakes with sufficient precision to almost lock the brakes.</span>
Answer:
M1 V1 = M1 V2 + M2 V3 conservation of momentum
V2 = (M1 V1 - M2 V3) / M1 where V2 = speed of M1 after impact
V2 = (3 * 9 - 1.5 * 5) / 9 = (27 - 7.5) / 9 = 2.17 m/s
Note: All speeds are in the same direction and have the same sign