Because the same sides(N and N, or S and S) are facing each other in magnet 4 and 5. Also in magnet 2 and 3.
30.1 N
Explanation:
Given:
Let's write the components of the net forces at the intersections. Note that the system is equilibrium so all the net forces are zero.
<u>Forces</u><u> </u><u>involving</u><u> </u><u>W1</u><u>:</u>
<u>Forces</u><u> </u><u>involving</u><u> </u><u>W2</u><u>:</u>
Substitute (2) into (3) and we get
Solving for ,
- Mass of the diver (m) = 90 Kg.
- Height of the board from the ground (h) = 10 m.
- Acceleration due to gravity (g) = 9.8 m/s^2.
- Height of the diver from the ground when he reaches point C (x) = 5m
- Initial velocity (u) = 0 m/s
- We know, gravitational potential energy of a body = mass × acceleration due to gravity × height.
- Therefore, the gravitational potential energy of the diver when he reaches point C (GPE) = mg(h - x)
- or, GPE = [90 × 9.8 × (10-5)] J
- or, GPE = [90 × 9.8 × 5] J
- or, GPE = 4410 J
- For a freely falling body,
- v^2 - u^2 = 2gh
- or, v^2 = 2gh
- We know, kinetic energy of a body = 1/2 mv^2
- Therefore, kinetic energy of the diver when he reaches point C (KE) = 1/2 m(2gx)
- Here, 2gx = (2 × 9.8 × 5) = 98 (m/s)^2
- We have already seen v^2 = 2gh
- or, v = √2gh
- So, the velocity of the diver = √2gx = √98 m/s = 9.9 m/s
<u>Answers:</u>
<em><u>The </u></em><em><u>gravitational</u></em><em><u> potential</u></em><em><u> energy</u></em><em><u> of</u></em><em><u> the</u></em><em><u> </u></em><em><u>diver </u></em><em><u>when </u></em><em><u>he</u></em><em><u> reaches</u></em><em><u> point</u></em><em><u> C</u></em><em><u> </u></em><em><u>is </u></em><em><u>4</u></em><em><u>4</u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>J.</u></em>
<em><u>The </u></em><em><u>velocity</u></em><em><u> </u></em><em><u>of </u></em><em><u>the </u></em><em><u>diver </u></em><em><u>is </u></em><em><u>9</u></em><em><u>.</u></em><em><u>9</u></em><em><u> </u></em><em><u>m/</u></em><em><u>s.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
Explanation:
Recall the formula for linear momentum (p):
which in our case equals 26.4 kg m/s
and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:
Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:
Now by knowing the particle's mass, we use the momentum formula to find its speed: