The intensity of the electric field is 30,000 N/C
Explanation:
The strength of the electric field produced by a single-point charge is given by the equation
where:
is the Coulomb's constant
q is the magnitude of the charge
r is the distance from the charge
In this problem, we have:
is the magnitude of the charge
r = 3 cm = 0.03 m is the distance at which we are calculating the field intensity
Substituting, we find:

Learn more about electric field:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
2e min :)) pls park braliest
I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>
- A certain circuit is composed of two series resistors
- The total resistance is 10 ohms
- One of the resistor is 4 ohms
<h3>
<u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- We have to find the value of other resistor?
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
We know that,
In series combination,
- When a number of resistances are connected in series, the equivalent I.e resultant resistance is equal to the sum of the individual resistances and is greater than any individual resistance
<u>That </u><u>is</u><u>, </u>
Rn in series = R1 + R2 + R3.....So on
<u>Therefore</u><u>, </u>
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
We have,
R1 + R2 = 10 Ω
4 + R2 = 10Ω
R2 = 10 - 4
R2 = 6Ω
Hence, The value of R2 resistor in series is 6Ω
Answer:
He can return to the spacecraft by sacrificing some of the tools employing the principle of conservation of momentum.
Explanation:
By carefully evaluating his direction back to the ship, the astronaut can throw some of his tools in the opposite direction to that. On throwing those tools of a certain mass, they travel at a certain velocity giving him velocity in the form of recoil in the opposite direction of the velocity of the tools. This is same as a gun and bullet recoil momentum conservation. It is also the principle on which the operational principles of their maneuvering unit is designed.