Centripetal acceleration is (speed-squared) / (radius)
CA = (6 m/s)² / (9 m)
CA = (36 m²/s²) / (9 m)
CA = (36/9) (m²/m·s²)
<em>Centripetal acceleration = 4 m/s²</em>
Answer:
4.08 s
Explanation:
Let the passenger took "t" time to catch the train
so in this case the total distance moved by the train + 5 m = total distance moved by the passenger
so we will have
distance moved by train is given as

also the distance moved by passenger

so we will have



t = 4.08 s
There are many factors that determine if an aircraft can operate from a given airport. Of course the availability of certain services, such as fuel, access to air stairs and maintenance are all necessary. But before considering anything else, one must determine if the plane can physically land at an airport, and equally as important, take off.
What is the minimum runway length that will serve?
Looking at aerial views of runways can lead some to the assumption that they are all uniform, big and appropriate for any plane to land. This couldn’t be further from the truth.
A given aircraft type has its own individual set of requirements in regards to these dimensions. The classic 150’ wide runway that can handle a wide-body plane for a large group charter flight isn’t a guarantee at every airport. Knowing the width of available runways is important for a variety of reasons including runway illusion and crosswind condition.
Runways also have different approach categories based on width, and have universal threshold markings that indicate the actual width.
To learn more about runway
brainly.com/question/11553726
#SPJ4
Answer:
increases
Explanation:
it would have to work harder to get to two points together
It's called sedimentation. And erosion is when the rock is worn away by the water, and wind and becomes sediment.