1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
14

A cyclist accelerates from 0m/s to 8m/s in 3 seconds.

Physics
1 answer:
garik1379 [7]2 years ago
5 0

Answer:

the rate of acceleration is 2.6666(and so on) if thats your question

Explanation:

You might be interested in
A toy rocket is fired vertically into the air from the ground at an initial velocity of 80 feet per second. Find the time it wil
miskamm [114]

Answer: 16.3 seconds

Explanation: Given that the

Initial velocity U = 80 ft/s

Let's first calculate the maximum height reached by using third equation of motion.

V^2 = U^2 - 2gH

Where V = final velocity and H = maximum height.

Since the toy is moving against the gravity, g will be negative.

At maximum height, V = 0

0 = 80^2 - 2 × 9.81 × H

6400 = 19.62H

H = 6400/19.62

H = 326.2

Let's us second equation of motion to find time.

H = Ut - 1/2gt^2

Let assume that the ball is dropped from the maximum height. Then,

U = 0. The equation will be reduced to

H = 1/2gt^2

326.2 = 1/2 × 9.81 × t^2

326.2 = 4.905t^2

t^2 = 326.2/4.905

t = sqrt( 66.5 )

t = 8.15 seconds

The time it will take for the rocket to return to ground level will be 2t.

That is, 2 × 8.15 = 16.3 seconds

8 0
3 years ago
How does the direction of friction relate to the direction of motion
lesya692 [45]
 <span>It reacts to the </span>motion<span>. If the mass hanging from the pulley was overwhelmingly heavier than the mass on the ramp, it'll obviously pull the ramp mass up and thus </span>friction<span> would be trying to oppose this and vice versa. </span>
5 0
3 years ago
A 4.87-kg ball of clay is thrown downward from a height of 3.21 m with a speed of 5.21 m/s onto a spring with k = 1570 N/m. The
Yuki888 [10]

Answer:

Approximately 0.560\; {\rm m}, assuming that:

  • the height of 3.21\; {\rm m} refers to the distance between the clay and the top of the uncompressed spring.
  • air resistance on the clay sphere is negligible,
  • the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}, and
  • the clay sphere did not deform.

Explanation:

Notations:

  • Let k denote the spring constant of the spring.
  • Let m denote the mass of the clay sphere.
  • Let v denote the initial speed of the spring.
  • Let g denote the gravitational field strength.
  • Let h denote the initial vertical distance between the clay and the top of the uncompressed spring.

Let x denote the maximum compression of the spring- the only unknown quantity in this question.

After being compressed by a displacement of x, the elastic potential energy \text{PE}_{\text{spring}} in this spring would be:

\displaystyle \text{PE}_{\text{spring}} = \frac{1}{2}\, k\, x^{2}.

The initial kinetic energy \text{KE} of the clay sphere was:

\displaystyle \text{KE} = \frac{1}{2}\, m \, v^{2}.

When the spring is at the maximum compression:

  • The clay sphere would be right on top of the spring.
  • The top of the spring would be below the original position (when the spring was uncompressed) by x.
  • The initial position of the clay sphere, however, is above the original position of the top of the spring by h = 3.21\; {\rm m}.

Thus, the initial position of the clay sphere (h = 3.21\; {\rm m} above the top of the uncompressed spring) would be above the max-compression position of the clay sphere by (h + x).

The gravitational potential energy involved would be:

\text{GPE} = m\, g\, (h + x).

No mechanical energy would be lost under the assumptions listed above. Thus:

\text{PE}_\text{spring} = \text{KE} + \text{GPE}.

\displaystyle \frac{1}{2}\, k\, x^{2} = \frac{1}{2}\, m\, v^{2} + m\, g\, (h + x).

Rearrange this equation to obtain a quadratic equation about the only unknown, x:

\displaystyle \frac{1}{2}\, k\, x^{2} - m\, g\, x - \left[\left(\frac{1}{2}\, m\, v^{2}\right)+ (m\, g\, h)\right] = 0.

Substitute in k = 1570\; {\rm N \cdot m^{-1}}, m = 4.87\; {\rm kg}, v = 5.21\; {\rm m\cdot s^{-1}}, g = 9.81\; {\rm m \cdot s^{-2}}, and h = 3.21\; {\rm m}. Let the unit of x be meters.

785\, x^{2} - 47.775\, x - 219.453 \approx 0 (Rounded. The unit of both sides of this equation is joules.)

Solve using the quadratic formula given that x \ge 0:

\begin{aligned}x &\approx \frac{-(-47.775) + \sqrt{(-47.775)^{2} - 4 \times 785 \times (-219.453)}}{2 \times 785} \\ &\approx 0.560\; {\rm m}\end{aligned}.

(The other root is negative and is thus invalid.)

Hence, the maximum compression of this spring would be approximately 0.560\; {\rm m}.

5 0
2 years ago
What type of magnetism is present in a magnet that you use to place a photograph on the refrigerator?
Vika [28.1K]

Answer:

C) Contact

Explanation:

The magnet requires almost direct <u>contact</u> with the fridge to start its magnetic properties.

7 0
3 years ago
Read 2 more answers
A car slows down uniformly from a speed of 30.0 m/s to rest in 7.20 s
Ede4ka [16]

When acceleration is constant, the average velocity is given by

\bar v=\dfrac{v+v_0}2

where v and v_0 are the final and initial velocities, respectively. By definition, we also have that the average velocity is given by

\bar v=\dfrac{\Delta x}{\Delta t}=\dfrac{x-x_0}{t-t_0}

where x,x_0 are the final/initial displacements, and t,t_0 are the final/initial times, respectively.

Take the car's starting position to be at t_0=0\,\mathrm s. Then

\dfrac{v+v_0}2=\dfrac{x-x_0}t\implies x=x_0+\dfrac12(v+v_0)t

So we have

x=0\,\mathrm m+\dfrac12\left(0\,\dfrac{\mathrm m}{\mathrm s}+30.0\,\dfrac{\mathrm m}{\mathrm s}\right)(7.20\,\mathrm s)=108\,\mathrm m

You also could have first found the acceleration using the equation

v=v_0+at

then solve for x via

x=x_0+v_0t+\dfrac12at^2

but that would have involved a bit more work, and it turns out we didn't need to know the precise value of a anyway.

7 0
3 years ago
Other questions:
  • Sandra joined a new company in HR. She believes most of the employees are overburdened and stressed. What action should she unde
    11·2 answers
  • what issues might arise in determining the latent heat of something that sublimes in comparison to something that melts
    7·2 answers
  • The most common natural fiber found at a crime scene, and thus forensically insignificant (unless it is of a unique color)
    14·2 answers
  • Risk-assessment models are used to _____.
    5·2 answers
  • A Young'sdouble-slit interference experiment is performed with monochromatic light. The separation between the slits is 0.44 mm.
    10·1 answer
  • Suppose a flagellum is rotating at a constant rps (revolution per second). What is the angular displacement of the flagellum in
    11·1 answer
  • An object in space is initially stationary relative to the Earth. Then, a force begins acting on the object, starting with a for
    5·1 answer
  • The bands on Jupiter are ultimately caused by...
    12·1 answer
  • A ball is dropped from the top of a building. The gravitational force is 10 N down, and the force of air resistance is 1 N up. W
    14·1 answer
  • Draw the Free- Body diagram of the 37 kilogram glass falling to the floor in a vacuum.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!