Answer:
Less than 18000N
Explanation:
Given

This question will be answered using Newton's third law.
Understanding this law, it implies that reaction force is equal and opposite to the force exerted.
This implies that;
If the force exerted on the ball is 18000N
the force exerted is -18000N
So, the option that answers the question is less than 18000N because -18000N < 18000N
44C i think. Do you have options for the answer?
The answer
2y + 14 = 17
The 17 is to the right of the = sign
It is also the answer
Answer:
Vf = - 20 m/s ( -ve sign shows that the particle is moving opposite to positive x- direction).
Explanation:
Given:
Vi = 20 m/s, m= 10 mg =1 × 10⁻⁵ kg, q= -4.0 × 10⁻⁶ C , E= 20 N/C. t= 5.0 s
first to find Electric Force
F= Eq = 20 × -4.0 10⁻⁶ C = - 8 × 10⁻⁵ N (-ve sign shows that the field will push the particle opposite to positive x- direction)
We also have F=ma
⇒ a = F/m = - 8 × 10⁻⁵ N / 10 × 10⁻⁵ kg = -8 m/s² ( -ve sign shows that the particle is accelerated opposite to positive x- direction)
Now according the first equation of Motion.
Vf = Vi + at
Vf = 20 m/s + -8 m/s² × 5 s
Vf= -20 m/s ( -ve sign shows that the particle is moving opposite to positive x- direction)
Here in the process we require
1. Heat to melt down all ice
2. Heat to raise the temperature of whole water to 100 degree C
3. Heat to boil off the water
now here for the first part
Heat required to melt the ice


now heat required to raise the temperature to 100 degree C



Now heat required to boil it off


now the total heat required will be



so it required 287200 calorie heat to boil it all water