The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
<h3>What is velocity?</h3>
Velocity is a vector quantity that tells the distance an object has traveled over a period of time.
Displacement is a vector quality showing total length of an area traveled by a particular object.
Imagine a time-position graph where the velocity of an object is constant. What will be observed on the graph concerning the slope of the line segment as well as the velocity of the object?
The slope of the line is equal to zero and the object will be stationary.
The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
To learn more about velocity refer to the link
brainly.com/question/18084516
#SPJ2
Answer:
D
Explanation:
Insulator is like rubber, it cant physically hold heat well
Answer:
(A) Q = 321.1C (B) I = 42.8A
Explanation:
(a)Given I = 55A−(0.65A/s2)t²
I = dQ/dt
dQ = I×dt
To get an expression for Q we integrate with respect to t.
So Q = ∫I×dt =∫[55−(0.65)t²]dt
Q = [55t – 0.65/3×t³]
Q between t=0 and t= 7.5s
Q = [55×(7.5 – 0) – 0.65/3(7.5³– 0³)]
Q = 321.1C
(b) For a constant current I in the same time interval
I = Q/t = 321.1/7.5 = 42.8A.
Answer: 
Explanation:
Given
Distance putty has to travel is 3.5 m
The initial speed of putty is 9.50 m/s
Using equation of motion to determine the velocity of putty just before it hits ceiling


So, the velocity of putty just before hitting is 