Beats are interference patterns between two tones of different frequencies. To prove the skeptic first, play the recorded audio as there are no beats in it. Now take two sound sources with different frequencies. When both sources are turned on, we hear notes that rise and fall at equal intervals. That's what's called beats.
A frequency beat occurs when two waves with different frequencies overlap, causing alternating cycles of constructive and destructive interference between the waves.
When we tap the table with our finger, then put our ear to the table, and tap the table surface as far as 30 cm from our ear. Then the sound of beats on the table will sound louder when we put our ears on the table. So, it can be concluded that solid objects can conduct sound better than air. This is because the molecules or particles of solid objects are denser than air.
Learn more about the beat's frequency at brainly.com/question/14157895
#SPJ4
Answer: J.J Thomson
Explanation: J. J. Thomson, who discovered the electron in 1897, proposed the plum pudding model of the atom in 1904 before the discovery of the atomic nucleus in order to include the electron in the atomic model.
Answer:
The work is -67.76 J
Explanation:
The law of conservation of energy is considered one of one of the fundamental laws of physics and states that the total energy of an isolated system remains constant. except when it is transformed into other types of energy.
This is summed up in the principle that energy can neither be created nor destroyed in the universe, only transformed into other forms of energy.
In this case you must calculate the loss of kinetic energy. This loss is actually the work done against the resistive force in the air. Friction is the only force other than gravity that acts on the ball.
So, the loss of kinetic energy is 
You know:
- mass=m=0.22 kg
- Initial velocity of the ball:

Final velocity of the ball: 
Replacing:
= -67.76 J
Friction work is always negative because friction is always against displacement.
<u><em>The work is -67.76 J</em></u>