Solubility of a compound in water can be referred to as the amount of the compound that can be dissolved in 1 L of the solvent (water) at any given temperature. Solubility of a compound can be expressed in the units of g/L or mg/L.
Given that the solubility of calcium carbonate in water = 14 mg/L
We have to calculate the volume of water that can dissolve 11 g of calcium carbonate.
Converting 11 g calcium carbonate to mg:

Volume of water that would dissolve 11000 mg calcium carbonate
= 
=785.7 L
Rounding the volume 785.7 L to two significant figures, we get 790 L water.
Therefore, we would need 790 L water to completely dissolve 11 g of calcium carbonate.
Any of the other alkali metals not mentioned (I.e. rubidium, caesium or francium). They are all group one metals meaning that they contain one valence (outer shell) electron so they will have similar properties. Francium is the most reactive alkali metal while lithium is the least reactive (if you’d like me to explain that let me know :) )
potassium is just below the sodium in periodic table in s group !
so the valence electron of sodium and potassium is same and that is 1
The volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
<h3>How to calculate volume?</h3>
The volume of a solution can be calculated by dividing the mass by the density. That is;
Volume = mass/density
According to this question, a soft drink contains 12.1% sucrose (C12H22O11) by mass. This means that the mass of the sucrose is
12.1/100 × 102.5 = 12.40g of sucrose
Volume = 12.40g ÷ 1.04g/mL
Volume = 11.93mL
Therefore, the volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
Learn more about volume at: brainly.com/question/1578538