The frequency of a wave represents B. the number of wave cycles that pass through a specific point within a given time.
The distance between two consecutive crests and the length of a wave are the <em>wavelength</em>.
The distance between the highest and lowest points of a wave is <em>twice the amplitude</em>.
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M
Answer:
So, if a rock is changed or broken but stays where it is, it is called weathering. If the pieces of weathered rock are moved away, it is called erosion.
Answer:
Here's what I get.
Explanation:
- If your teachers don't ask for a specific type of formula, a condensed structural formula should be OK.
- If they ask specifically for a structural formula or a bond-line formula, that is what you must give.
Bottom line: ask your teachers in advance what they expect.
<h3><u>Answer;</u></h3>
<u>= 5 M or 5 moles/liter</u>
<h3><u>Explanation;</u></h3>
At point E, 90 g of substances X are dissolved in 100 g of the solvent.
100g of the solvent is equal to 100 ml
Molarity is the number of moles of a substance in one liter of a solvent.
90 g of X are in 100 ml
But; the RFM of X = 180 g/l
Therefore; the moles of X in 90 g = 90/180
= 0.5 moles
Therefore;
0.5 moles of X are contained in 100 ml of the solvent;
Thus, molarity = 0.5 × 1000/100
=<u> 5 M or 5 moles/liter</u>