Answer:
those have symbols for their Latin or Greek name
Explanation:
hope it helps
1. 0.33 M
2. 0.278 M
<h3>Further explanation</h3>
Molarity is a way to express the concentration of the solution
Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
1. 0.350 mol of NaOH in 1.05 L of solution.
n=0.35
V=1.05 L
Molarity :

2. 14.3 g of NaCl in 879 mL of solution.
mol NaCl(MW=58.5 g/mol) :

Molarity :

Is there suppose to be a picture? Cause I do t see one
Answer:
A:Boyle's Law or B:Charles's Law
Explanation:
<u>Answer:</u> The volume of concentrated solution required is 9.95 mL
<u>Explanation:</u>
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
pH = 0.70
Putting values in above equation, we get:
![0.70=-\log[H^+]](https://tex.z-dn.net/?f=0.70%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-0.70}=0.199M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-0.70%7D%3D0.199M)
1 mole of nitric acid produces 1 mole of hydrogen ions and 1 mole of nitrate ions.
Molarity of nitric acid = 0.199 M
To calculate the volume of the concentrated solution, we use the equation:

where,
are the molarity and volume of the concentrated nitric acid solution
are the molarity and volume of diluted nitric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of concentrated solution required is 9.95 mL