The surface tension acts to hold the surface intact. Capillary action occurs when the adhesion to the surface material is stronger than the cohesive forces between the water molecules. ... Water wants to stick to the glass and surface tension will push the water up, until the force of gravity prevents further rise.
Narrower tube openings allow capillary action to pull water higher
Answer:
I think it is 1.67
Explanation:
I multiply the 45 and 27 cause it says rate of which means to multiply.
when we placed in the container of real depth assuming = d
if the container filled with liquid A then its apparent depth d' = 7cm
so the refractive index nA = real depth / apparent depth
= d/7cm = 0.1428d
if the container filled with liquid B then its apparent depth d' = 6cm
so the refractive index nB = real depth / apparent depth
= d/6cm = 0.166d
if the container filled with liquid C then its apparent depth d' = 5cm
so the refractive index nC = real depth / apparent depth
= d/5cm = 0.2d
Since the refractive index is inversely proportional to the apparent depth
then the refractive indices are nC > nB > nA
Answer:
the ball is travelling very fast and the player can get injured if he doesn't wear gloves
Explanation:
(a) The object moves with uniform velocity from A to B.
(b) The object moves with constant velocity from B to C.
(c) The object moves with increasing velocity from C to D.
<h3>
Velocity of the object from point A to B</h3>
V(A to B) = (6 - 0)/(4 - 0) = 1.5 m/s
<h3>
Velocity of the object from point B to C</h3>
V(B to C) = (6 - 6)/(11 - 4) = 0 m/s
<h3>
Velocity of the object from point C to D</h3>
V(C to D) = (7 - 6)/(12 - 11) = 1 m/s
final velocity = 1 + 1.5 m/s = 2.5 m/s
Thus, we can conclude the following;
The object moves with uniform velocity from A to B.
The object moves with constant velocity from B to C.
The object moves with increasing velocity from C to D.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1