Answer:
The exploitation of high-value natural resources—oil, gas, minerals, and timber—has often been a key factor in triggering, escalating, or sustaining violent conflicts around the globe. Competition over renewable resources such as land and water is on the rise, and environmental degradation, population growth, and climate change are compounding the challenges. Governments are therefore under increasing pressure to sustainably manage natural resources and resolve conflicts around their ownership, management, allocation, and control.
<span>Since frequency and wavelength have inverse relationship. It can be expressed by the equation:
ν.λ = c
Where,
v = frequency of the electromagnetic wave.
λ = it's wavelength
c = the speed of light in a vacuum.
v = 2.00 Ghz x 10^9 Hz / 1 Ghz = 2.00 x 10^9 Hz
that means that in one second it covers 2.00 x 10^9 cycles.
λ = 3.10^8 m/s / 2.00 x 10^9 /s = 1.25E-10 nanometers</span>
Answer:
141 m at 65.6° N of E
Explanation:
Let E be along the positive x axis of a unit circle
N = 90°
E = 0°
SE = -45°
W = 180°
NW = 135°
east displacement
x = 140cos90 + 85cos0 + 35cos-45 + 38cos180 + 19cos135 = 58.313708... m
north displacement
y = 140sin90 + 85sin0 + 35sin-45 + 38sin180 + 19sin135 = 128.6862915... m
d = √(128.6862915² + 58.313708²) = 141.28216525... m
tanθ = 128.6862915 / 58.313708
θ = 65.622521...
The magnitude of the displacement current between the plates is 
Given,
A=4.3*

=
*A*
=
= -
=
<h3>Current </h3>
An electrical charge carrier flow known as current often involves electrons or atoms lacking in electrons. The capital letter I is frequently used as a symbol for current. Amperes are the common unit and are denoted by the letter A. A coulomb of electrical charge moves past a certain place in one second as one ampere of current does. Franklin current or conventional current are terms used by physicists to describe how current flows from relatively positive to comparatively negative sites. Negatively charged electrons are the most prevalent charge carriers. They move in a somewhat good direction from relatively negative points.
With e in volts per meter and t in seconds. at t = 0, the field is upward. the plate area is 4. 3 × 10-2 m2. for t > 0, what is the magnitude of the displacement current between the plates?
Learn more about current here:
brainly.com/question/13076734
#SPJ4