Much energy as would Microraptor gui have to expend to fly with a speed of 10 m/s for 1.0 minutes is 486 J.
The first step is to find the energy that Microraptor must release to fly at 10 m/s for 1.0 minutes. The energy that Microraptor must expend to fly can be found using the relationship between Power and Energy.
P = E/t
Where:
P = power (W)
T = time (s)
Now, a minimum of 8.1 W is required to fly at 10 m/s. So, the energy expended in 1 minute (60 seconds) is
P = E/t
E = P x t
E = 8.1 x 60
E = 486 Joules
Thus, the energy that Microraptor must expend to fly at 10 m/s for 1.0 minutes is the 486 J.
Learn more about Microraptor gui here brainly.com/question/1200755
#SPJ4
Answer:
v₂ = 70 m / s
Explanation:
For this exercise let's use Bernoulli's equation
where subscript 1 is for the top of the mountain and subscript 2 is for Tuesday's level
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ +1/2 ρ v₂² + ρ g y₂
indicate that the pressure in the two points is the same, y₁ = 250 m, y₂ = 0 m, the water in the upper part, because it is a reservoir, is very large for which the velocity is very small, we will approximate it to 0 (v₁ = 0), we substitute
ρ g y₁ = ½ ρ v₂²
v₂ =
let's calculate
v₂ = √( 2 9.8 250)
v₂ = 70 m / s
Answer:
<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

- v is image distance
- u is object distance, u is 10 cm
- f is focal length, f is 5 cm

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>
• Let's derive this formula from the lens formula:

» Multiply throughout by fv

• But we know that, v/u is M

- v is image distance, v is 10 cm
- f is focal length, f is 5 cm
- M is magnification.

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>
- Image is magnified
- Image is erect or upright
- Image is inverted
- Image distance is identical to object distance.
This problem involves Newton's universal law of gravitation and the equation to follow would be.
F = GM₁M₂/r²
Given: M₁ = 0.890 Kg; M₂ = 0.890 Kg; F = 8.06 x 10⁻¹¹ N; G = 6.673 X 10⁻¹¹ N m²/Kg²
Solving for distance r = ?
r = √GM₁M₂/F
r = √(6.673 x 10⁻¹¹ N m₂/Kg²)(0.890 Kg)(0.890 Kg)/ 8.06 x 10⁻¹¹ N
r = 0.81 m