A futuristic design for a car is to have a large solid disk-shaped flywheel within the car storing kinetic energy. The uniform flywheel has mass 370 kg with a radius of 0.500 m and can rotate up to 320 rev/s. Assuming all of this stored kinetic energy could be transferred to the linear velocity of the 3500-kg car, find the maximum attainable speed of the car.
Answer:
The "butterfly Effect"
Explanation:
The "butterfly effect" will probably have big changes in the future.
Answer:
(a) 0.942 m
(b) 18.84 m/s
(c) 2366.3 m/s²
(d) 0.05 s
Explanation:
(a) In one revolution, it travels through one circumference, 2πr = 2 × 3.14 × 0.15 m = 0.942 m.
(b) Its frequency, f, is 1200 rev/min =
rev/s = 20 rev/s.
Its angular frequency, ω = 2πf = 2π × 20 = 40π
The speed is given by
v = ωr = 40π × 0.15 = 6π = 18.84 m/s
(c) Its acceleration is given by, a = ω²r = (40π)² × 0.15 = 2366.3 m/s²
(d) The period is the inverse of the frequency because it is the time taken to complete one revolution.

T = 1/20 = 0.05 s
Answer:
11.07Hz
Explanation:
Check the attachment for diagram of the standing wave in question.
Formula for calculating the fundamental frequency Fo in strings is V/2L where;
V is the velocity of the wave in string
L is the length of the string which is expressed as a function of its wavelength.
The wavelength of the string given is 1.5λ(one loop is equivalent to 0.5 wavelength)
Therefore L = 1.5λ
If L = 3.0m
1.5λ = 3.0m
λ = 3/1.5
λ = 2m
Also;
V = √T/m where;
T is the tension = 0.98N
m is the mass per unit length = 2.0g = 0.002kg
V = √0.98/0.002
V = √490
V = 22.14m/s
Fo = V/2L (for string)
Fo = 22.14/2(3)
Fo = 22.14/6
Fo = 3.69Hz
Harmonics are multiple integrals of the fundamental frequency. The string in question resonates in 2nd harmonics F2 = 3Fo
Frequency of the wave = 3×3.69
Frequency of the wave = 11.07Hz