I disagree.
Many substances show fluorescence under ULTRAVIOLET light, NOT microwaves. :)
Newton's second law tells you:
Sum of forces on an object = ma
Here, the forces acting on the bundle are the tension in the string and the force of gravity, these two must combine to yield the acceleration of the bundle.
So we have:
T-mg = ma
or T=m(g+a)
We know m=8.7kg, we need to find a from the information
starting from rest, an accelerating object covers distance according to:
<span>dist = 1/2 at^2 </span>
to cover 1m in 1.8s, we have:
a=2d/t^2 = 2x1/1.8^2 = 0.62 m/s/s
Thus, the tension in the string is:
<span>T = m(g+a)
= 8.7</span>kg(9.8m/s/s+0.62m/s/s)
<span>
<span>T = 90.654 N
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
Explanation:
To find the direction of this vector we need o find the angle that has a tangent of the y-component over the x-component:
but since we are in Q2 we have to add 180 degrees to that angle giving us 165.5 degrees
Answer:
3.536*10^-6 C
Explanation:
The magnitude of the charge is expresses as Q = CV
C is the capacitance of the capacitor
V is the voltage across the capacitor
Get the capacitance
C = ε0A/d
ε0 is the permittivity of the dielectric = 8.84 x 10-12 F/m
A is the area = 0.2m²
d is the plate separation = 0.1mm = 0.0001m
Substitute
C = 8.84 x 10-12 * 0.2/0.0001
C = 1.768 x 10-8 F
Get the potential difference V
Using the formula for Electric field intensity
E = V/d
2.0 × 10^6 = V/0.0001
V = 2.0 × 10^6 * 0.0001
V = 2.0 × 10^2V
Get the charge on each plate.
Q = CV
Q = 1.768 x 10-8 * 2.0 × 10^2
Q = 3.536*10^-6 C
Hence the magnitude of the charge on each plate should be 3.536*10^-6 C
<span>the speed of something in a given direction. so i think none of these</span>