Answer:
1694 days
Explanation:
In first-order kinetics, the rate is proportional to the amount.
dA/dt = kA
For first-order kinetics, the rate k can be found using the half-life:
t₁,₂ = (ln 2) / k
In other words, the half-life is inversely proportional with the rate.
At the lower temperature, the rate is reduced to a third, so the half-life increases by a factor of 3. Meaning that the new half-life is 170 × 3 = 510 days.
The "shelf life" is the time it takes to reduce the initial amount to 10%. We can solve for this using the half-life equation.
A = A₀ (½)^(t / t₁,₂)
A₀/10 = A₀ (½)^(t / 510)
1/10 = (½)^(t / 510)
ln(1/10) = (t / 510) ln(½)
ln(10) = (t / 510) ln(2)
ln(10) / ln(2) = t / 510
t = 510 ln(10) / ln(2)
t ≈ 1694
This link should help you out https://quizlet.com/40330134/biomechanics-questions-flash-cards/
The isobars in the conventional series that will be needed
to complete the pressure analysis between the lowest and highest values on this
map are: 1008, 1012, 1016, 1020.
To add, an isobar is <span>a line on a map connecting points having the
same atmospheric pressure at a given time or on average over a given period.</span>
R(parallel) = product/ sum
50×30/50+30
1500/80
18,75 ohms
Ice at -25
Hope this helps
May God bless you and your family