I see the light moving exactly at speed equal to c.
In fact, the second postulate of special relativity states that:
"The speed of light in free space has the same value c<span> in all inertial frames of reference."
</span>
The problem says that I am moving at speed 2/3 c, so my motion is a uniform motion (constant speed). This means I am in an inertial frame of reference, so the speed of light in this frame must be equal to c.
Answer:
θ=5.65°
Explanation:
Given Data
Mass m=1.5 kg
Length L=0.80 m
First spring constant k₁=35 N/m
Second spring constant k₂=56 N/m
To find
Angle θ
Solution
As the both springs take half load so apply Hooks Law:
Force= Spring Constant ×Spring stretch
F=kx
x=F/k
as
![d=x_{1}-x_{2}\\ as \\x=F/k\\so\\d=\frac{F_{1} }{k_{1}} -\frac{F_{2}}{k_{2}}\\ Where \\F=1/2mg\\d=\frac{(1/2)mg}{k_{1}} -\frac{(1/2)mg}{k_{2}}\\ d=\frac{mg}{2}(\frac{1}{k_{1}} -\frac{1}{k_{2}} )\\ And\\Sin\alpha=d/L\\\\alpha =sin^{-1}[\frac{mg}{2L}(1/k_{1}-1/k_{2})]\\\alpha =sin^{-1}[\frac{(1.5kg)(9.8m/s^{2} )}{2(0.80m)}(1/35Nm-1/56Nm) ]\\\alpha =5.65^{o}](https://tex.z-dn.net/?f=d%3Dx_%7B1%7D-x_%7B2%7D%5C%5C%20%20as%20%5C%5Cx%3DF%2Fk%5C%5Cso%5C%5Cd%3D%5Cfrac%7BF_%7B1%7D%20%7D%7Bk_%7B1%7D%7D%20-%5Cfrac%7BF_%7B2%7D%7D%7Bk_%7B2%7D%7D%5C%5C%20Where%20%5C%5CF%3D1%2F2mg%5C%5Cd%3D%5Cfrac%7B%281%2F2%29mg%7D%7Bk_%7B1%7D%7D%20-%5Cfrac%7B%281%2F2%29mg%7D%7Bk_%7B2%7D%7D%5C%5C%20d%3D%5Cfrac%7Bmg%7D%7B2%7D%28%5Cfrac%7B1%7D%7Bk_%7B1%7D%7D%20-%5Cfrac%7B1%7D%7Bk_%7B2%7D%7D%20%29%5C%5C%20And%5C%5CSin%5Calpha%3Dd%2FL%5C%5C%5C%5Calpha%20%3Dsin%5E%7B-1%7D%5B%5Cfrac%7Bmg%7D%7B2L%7D%281%2Fk_%7B1%7D-1%2Fk_%7B2%7D%29%5D%5C%5C%5Calpha%20%20%20%3Dsin%5E%7B-1%7D%5B%5Cfrac%7B%281.5kg%29%289.8m%2Fs%5E%7B2%7D%20%29%7D%7B2%280.80m%29%7D%281%2F35Nm-1%2F56Nm%29%20%5D%5C%5C%5Calpha%20%3D5.65%5E%7Bo%7D)
θ=5.65°
Answer:
25.06s
Explanation:
Remaining part of the question.
(A large stone sphere has a mass of 8200 kg and a radius of 90 cm and floats with nearly zero friction on a thin layer of pressurized water.)
Solution:
F = 60N
r = 90cm = 0.9m
M = 8200kg
Moment of inertia for a sphere (I) = ⅖mr²
I = ⅖ * m * r²
I = ⅖ * 8200 * (0.9)²
I = 0.4 * 8200 * 0.81
I = 2656.8 kgm²
Torque (T) = Iα
but T = Fr
Equating both equations,
Iα = Fr
α = Fr / I
α = (60 * 0.9) / 2656.8
α = 0.020rad/s²
The time it will take her to rotate the sphere,
Θ = w₀t + ½αt²
Angular displacement for one revolution is 2Π rads..
θ = 2π rads
2π = 0 + ½ * 0.02 * t²
(w₀ is equal to zero since sphere is at rest)
2π = ½ * 0.02 * t²
6.284 = 0.01 t²
t² =6.284 / 0.01
t² = 628.4
t = √(628.4)
t = 25.06s
Answer:
Natural selection is a mechanism, or cause, of evolution.
Explanation:
Adaptations are physical or behavioral traits that make an organism better suited to its environment. Heritable variation comes from random mutations.
Answer:
1890J
Explanation:
375+45 = 420kg (total mass)
kinetic energy = 1/2 × mass × velocity²
1/2 × 420 × 3² = 1890J