Answer:
8977.7 kg/m^3
Explanation:
Volume of water displaced = 55 cm^3 = 55 x 10^-6 m^3
Reading of balance when block is immersed in water = 4.3 N
According to the Archimedes principle, when a body is immersed n a liquid partly or wholly, then there is a loss in the weight of body which is called upthrust or buoyant force. this buoyant force is equal to the weight of liquid displaced by the body.
Buoyant force = weight of the water displaced by the block
Buoyant force = Volume of water displaced x density of water x g
= 55 x 10^-6 x 1000 x .8 = 0.539 N
True weight of the body = Weight of body in water + buoyant force
m g = 4.3 + 0.539 = 4.839
m = 0.4937 kg
Density of block = mass of block / volume of block
= 
Density of block = 8977.7 kg/m^3
Explanation:
It is given that,
When a high-energy proton or pion traveling near the speed of light collides with a nucleus, 
Speed of light, 
Let t is the time interval required for the strong interaction to occur. The speed is given by :




So, the time interval required for the strong interaction to occur is
. Hence, this is the required solution.
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.
Answer:
Inductance, L = 0.0212 Henries
Explanation:
It is given that,
Number of turns, N = 17
Current through the coil, I = 4 A
The total flux enclosed by the one turn of the coil, 
The relation between the self inductance and the magnetic flux is given by :


L = 0.0212 Henries
So, the inductance of the coil is 0.0212 Henries. Hence, this is the required solution.
Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!