Hey there
Crying is a signal <span>of distress to babies.</span>
Answer:

Explanation:
Displacement is a vector that defines the position of a particle. The vector extends from the initial position to the final position. Therefore, the displacement only takes into account this positions, since its trajectory is not important:

Potential energy is highest when the car is released at the top of the ramp. The correct answer is option C
Potential energy is the energy possessed by a body when the body is at rest. Potential energy is at time called gravitational potential energy which as a product of mass of the body, acceleration due to gravity and the height attained by the body. That is,
P.E = mgh
When a car is moving down a ramp, the potential energy of the car can never remain the same except the car stop at a certain point.
Whenever a car is moving down a ramp, the potential energy of the car will be highest when the car is release at the top of the ramp. And lowest when the car reaches the bottom of the ramp.
The statement that is correct about the potential energy of a car moving down a ramp is:
Potential energy is highest when the car is released at the top of the ramp.
Therefore, the correct answer is option C
Learn more here: brainly.com/question/17400615
Answer:

Explanation:
The impulse-momentum theorem gives the impulse on an object to be equal to the change in momentum of that object. Since mass is maintained, the change in momentum of the basketball is:
, where
is the mass of the basketball and
is the change in velocity.
Since the basketball is changing direction, its total change in velocity is:
.
Therefore, the basketball's change in momentum is:
.
Thus, the impulse on the basketball is
(two significant figures).
Answer:
v = 666.667 m/s
Explanation:
<u>Given</u>: length L = 25 cm = 0.25 m, B = 600 G = 0.06 T ( 1G = 0.0001 T)
emf= 10 V
Solution:
emf = vBL
v= emf / BL
v = 10 V / (0.06 T× 0.25 m)
v = 666.667 m/s