Answer:
f(g(x)) = 4x² + 16x + 13
Step-by-step explanation:
Given the composition of functions f(g(x)), for which f(x) = 4x + 5, and g(x) = x² + 4x + 2.
<h3><u>Definitions:</u></h3>
- The <u>polynomial in standard form</u> has terms that are arranged by <em>descending</em> order of degree.
- In the <u>composition of function</u><em> f </em>with function <em>g</em><em>, </em>which is alternatively expressed as <em>f </em>° <em>g,</em> is defined as (<em>f </em> ° <em>g</em>)(x) = f(g(x)).
In evaluating composition of functions, the first step is to evaluate the inner function, g(x). Then, we must use the derived value from g(x) as an input into f(x).
<h3><u>Solution:</u></h3>
Since we are not provided with any input values to evaluate the given composition of functions, we can express the given functions as follows:
f(x) = 4x + 5
g(x) = x² + 4x + 2
f(g(x)) = 4(x² + 4x + 2) + 5
Next, distribute 4 into the parenthesis:
f(g(x)) = 4x² + 16x + 8 + 5
Combine constants:
f(g(x)) = 4x² + 16x + 13
Therefore, f(g(x)) as a polynomial in <em>x</em> that is written in standard form is: 4x² + 16x + 13.
<h3>
Answer: C) regular</h3>
Explanation:
Any regular polygon is both equilateral and equiangular.
Equilateral = all sides are equal
Equiangular = all angles are equal
Answer:
A, B, C, F
Step-by-step explanation:
they need to include an = sign
Answer: The correct option is f(x) has three real roots and two imaginary roots.
Explanation:
It is given that the roots of fifth degree polynomial function are -2, 2 and 4+i.
Since he degree of f(x) is 5, therefore there are 5 roots of the function either real or imaginary.
According to the complex conjugate root theorem, if a+ib is a root of a polynomial function f(x), then a-ib is also a root of the polynomial f(x).
Since 4+i is a root of f(x), so by complex conjugate rot theorem 4-i is also a root of f(x).
From the the given data the number of real roots is 2 and the number of 2. The number of complex roots is always an even number, so the last root must be a real number.
Therefore, the correct option is f(x) has three real roots and two imaginary roots.
The altitude lines have to be extended so they cross. hope this helps.