Answer:
Explanation:
is insufficient to overcome intermolecular forces.
Magma can push through holes or cracks in the crust of the volcano, causing a volcanic eruption. Which is when magma flows or erupts onto earth's surface, which is what you call lava (whenever it goes onto the earths surface).
Answer:
18.84 g of silver.
Explanation:
We'll begin by calculating the number atoms present in 5.59 g of sulphur. This can be obtained as follow:
From Avogadro's hypothesis,
1 mole of sulphur contains 6.02×10²³ atoms.
1 mole of sulphur = 32 g
Thus,
32 g of sulphur contains 6.02×10²³ atoms.
Therefore, 5.59 g of sulphur will contain = (5.59 × 6.02×10²³) / 32 = 1.05×10²³ atoms.
From the calculations made above, 5.59 g of sulphur contains 1.05×10²³ atoms.
Finally, we shall determine the mass of silver that contains 1.05×10²³ atoms.
This is illustrated below:
1 mole of silver = 6.02×10²³ atoms.
1 mole of silver = 108 g
108 g of silver contains 6.02×10²³ atoms.
Therefore, Xg of silver will contain 1.05×10²³ atoms i.e
Xg of silver = (108 × 1.05×10²³)/6.02×10²³
Xg of silver = 18.84 g
Thus, 18.84 g of silver contains the same number of atoms (i.e 1.05×10²³ atoms) as 5.59 g of sulfur
The reaction will produce solid copper and aluminium chloride salt.
Explanation:
Copper chloride (CuCl₂) in solution will react with aluminium to form solid cooper and aluminium chloride (AlCl₃).
3 CuCl₂ (aq) + 2 Al (s) → 3 Cu (s) + 2 AlCl₃ (aq)
Learn more about:
numerical problems with copper chloride and aluminium
brainly.com/question/8827783
#learnwithBrainly
Answer:
The correct answer is "Iron and oxygen act as Fe3+ and O2− ions respectively, forming rust (Fe₂O₃) in the presence of water by the formation of an ionic bond".
Explanation:
Rust is formed when iron reacts with oxygen in the presence of water (either if the iron is submerged or exposed to moisture in the air), forming the chemical compound Fe₂O₃. The presence of water is needed for rust formation because iron and oxygen act as ions when they are exposed to water, particularly Fe3+ and O2− ions respectively. The bond formed between these two elements are ionic bonds, because it is comprised of the reaction between a metal (iron) and a non-metal (oxygen).