Answer:

Explanation:
The peak wavelength of the spectral distribution can be found by using Wien's displacement law:

where
is Wien's displacement constant
T is the absolute temperature
For the cosmic background radiation, the temperature is
T = 2.7 K
So, the corresponding peak wavelength is

Answer: 115.2kg
Explanation:
Net force = 265 N
Acceleration of bike & rider = 2.30m/s2 (The SI unit of acceleration is m/s2)
Mass of the bike and rider together = ?
Since force is the product of the mass of an object and the acceleration by which it moves, Force = Mass x Acceleration
265N = Mass x 2.30m/s2
Mass = (265N/2.30m/s2)
Mass = 115.2 kg
Thus, the Mass of the bike and rider together is 115.2kg
Answer:
the correct answer is 273.2 k
Answer: The molar heat capacity of aluminum is 
Explanation:
As we know that,
.................(1)
where,
q = heat absorbed or released
= mass of water = 130.0 g
= mass of aluminiunm = 23.5 g
= final temperature
=
= temperature of water =
= temperature of aluminium =
= specific heat of water= 
= specific heat of aluminium= ?
Now put all the given values in equation (1), we get
Molar mass of Aluminium = 27 g/mol
Thus molar heat capacity =
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s