Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
Answer:
It depends if they have the same lightbulb in them.
Explanation:
In a stationary situation, the weight of person is
This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is
This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:
where a is the acceleration of the elevator. If we solve for a, we find
The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
Because the Earth's axis is not "straight up and down" as we move
around the sun.
So when we're on one side of the sun, the top pole leans slightly toward
the sun. During that time the sun shines more directly on the top half
of the Earth, and less directly on the bottom half. The people on the
top half see the sun higher in the sky, and their weather is warmer,
while the people on the bottom half see the sun lower in the sky, and
their weather is cooler.
Then, when we're on the other side of the sun, the top pole leans slightly
away from the sun. During that time the sun shines more directly on the
bottom half
of the Earth, and less directly on the top half. The people on
the bottom half see the sun higher in the sky, and their weather is warmer,
while the people on the top half see the sun lower in the sky, and their
weather is cooler.
The Earth makes the complete trip around the sun in one year, so the
people on the Earth go through this cycle of higher/lower sun and
warmer/cooler weather every year.