Answer:
-2.3 × 10^-9 Coulombs(C).
Explanation:
So, we are given the following data or information or parameters that is going to help us to solve the problem effectively and efficiently;
=> " the shuttle's potential is typically changed by -1.4 V during one revolution. "
=> " Assuming the shuttle is a conducting sphere of radius 15 m".
So, in order to estimate the value for the charge we will be making use of the equation below:
Charge, C =( radius × voltage or potential difference) ÷ Coulomb's law constant.
Note that the value of Coulomb's law constant = 9 x 10^9 Nm^2 / C^2.
So, charge = { 15 × (- 1.4)} / 9 x 10^9 Nm^2 / C^2.
= -2.3 × 10^-9 Coulombs(C).
Answer:
a PDF is what u use to upload an assignment to turn it in to get graded
The scientists should best deal with this measurement by stating that there was an error during measuring and collect further data.
False. Since the forces are pulling in equal and opposite directions, the net force is 0.
Answer:
Please find the answer in the explanation
Explanation:
Take the regular compass and hold it so the case is vertical. Now use it to investigate the direction of the coil’s magnetic field at locations other than the central axis.
What happens as you move away from the center axis toward the coil? The direction of the magnetic compass needle will move in an opposite direction since the direction of the induced voltage is reversed.
What happens above the coil?
the needle on the magnetic compass will be deflected. Since compasses work by pointing along magnetic field lines
Outside the coil? The magnetic compass needle will experience no deflection. Since there is no induced voltage or current.
Below the coil?
The needle will move in an opposite direction.