Answer:
let me check the answer for you
Lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students. Option D is correct.
<h3>
What is a Transverse wave?</h3>
- The wave in which the oscillation of particles is is perpendicular to the direction of energy transfer.
- The students can make a transverse wave by raising their hands up and then down, one student at a time.
- The raised hand represents the oscillation of particles while the sequence of the raising hand represents the direction of energy transfer.
Therefore, lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students.
Learn more about Transverse waves:
brainly.com/question/3813804
Answer:
The answer is
<h2>270 m</h2>
Explanation:
To find the distance when given the velocity and time we use the formula
<h3>distance = velocity × time</h3>
From the question
velocity of the ball = 18 m/s
time = 15 s
So the distance is
distance = 18 × 15
We have the final answer as
<h3>270 m</h3>
Hope this helps you
The correct answer to the question is vertically downward i.e towards the centre of earth.
EXPLANATION:
As per the question, the box is pulled to the right.
Hence, the direction of the applied force is towards right.
We are asked to determine the direction of the gravitational force that acts on the body.
Before answering this question, first we gave to understand the gravitational force of earth.
Any body present on the surface of earth is attracted with the force of gravity of earth ( gravitational force ) towards its centre. It is equivalent to the weight of the body.
The force of gravity is always directed towards the centre of earth irrespective of the nature of applied force.
Hence, the direction of the gravitational force which acts on the box is vertically downward.