<u>Answer:</u> The value of equilibrium constant for the given reaction is 56.61
<u>Explanation:</u>
We are given:
Initial moles of iodine gas = 0.100 moles
Initial moles of hydrogen gas = 0.100 moles
Volume of container = 1.00 L
Molarity of the solution is calculated by the equation:



Equilibrium concentration of iodine gas = 0.0210 M
The chemical equation for the reaction of iodine gas and hydrogen gas follows:

<u>Initial:</u> 0.1 0.1
<u>At eqllm:</u> 0.1-x 0.1-x 2x
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
![[HI]_{eq}=2x=(2\times 0.079)=0.158M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.079%29%3D0.158M)
![[H_2]_{eq}=(0.1-x)=(0.1-0.079)=0.0210M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D%280.1-x%29%3D%280.1-0.079%29%3D0.0210M)
![[I_2]_{eq}=0.0210M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.0210M)
Putting values in above expression, we get:

Hence, the value of equilibrium constant for the given reaction is 56.61
ツ here your answer

- A)Potassium bromide(aq) + Barium iodide(aq) → Potassium iodide(aq) + Barium bromide(s)
- 2KBr(aq)+BaI2(aq) → 2KI(aq)+BaBr2(s)
- B)Balance the Chemical Equation for the reaction of calcium carbonate with hydrochloric acid:
- CaCO3+ HCl -> CaCl2 + CO2 + H2O To balance chemical equations we need to look at each element individually on both sides of the equation. calcium carbonate is a chemical compound with the formula CaCO3.
<em><u>M</u></em><em><u>a</u></em><em><u>r</u></em><em><u>k</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em>
Answer:
endormic
Explanation:
It occurs at a temperature and pressures below a substance's triple point on its phase diagram, which corresponds to the lowest pressure at which the substance can exist as a liquid