Scandium? Is that what you mean?
Answer:
1) all matter is made up of atoms and molecules 2) these tiny particles are always in motion; the higher the temp. the faster they move 3) at the same temp., heavier particles move more slowly then small particles
Explanation:
Answer: SO₂ + H₂O → HSO₃ ⁻ + H⁺
Justification:
1) Ionization means formation of ions.
2) Ions are species that are not neutral, they are charged, in virtue of having less or more electrons than protons.
3) Ionization may happen in different environments.
4) Ionic compunds, like Mg(OH)₂ dissociate into ions (ionize) in water. That is the example shown in the fourth option:
Mg(OH)₂ → Mg ²⁺ + 2OH⁻
5) How much a ionic compound dissociates in water (ionize) depends on the Ksp (product solubility constant) which measures the concentrations of the ions that can be in the solution.
6) The Ksp for Mg(OH)₂ is very low, meaning that it will slightly ionize.
7) SO₂ + H₂O forms H₂SO₄, which is a strong acid, meaning that it will ionize fully in water, into the ions HSO₃ ⁻ and H⁺, so the third option is a good example of ionization.
Answer:
It is not a gas because its particles do not have large space between them.
Answer:
see explanation below
Explanation:
You are missing the reaction scheme, but in picture 1, I found a question very similar to this, and after look into some other pages, I found the same scheme reaction, so I'm gonna work on this one, to show you how to solve it. Hopefully it will be the one you are asking.
According to the reaction scheme, in the first step we have NaNH2/NH3(l). This reactant is used to substract the most acidic hydrogen in the alkine there. In this case, it will substract the hydrogen from the carbon in the triple bond leaving something like this:
R: cyclopentane
R - C ≡ C (-)
Now, in the second step, this new product will experiment a SN2 reaction, and will attack to the CH3 - I forming another alkine as follow:
R - C ≡ C - CH3
Finally in the last step, Na in NH3 are reactants to promvove the hydrogenation of alkines. In this case, it will undergo hydrogenation in the triple bond and will form an alkene:
R - CH = CH - CH3
In picture 2, you have the reaction and mechanism.